Skip to main content
Log in

Continuity in weak topology: First order linear systems of ODE

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper we study important quantities defined from solutions of first order linear systems of ordinary differential equations. It will be proved that many quantities, such as solutions, eigenvalues of one-dimensional Dirac operators, Lyapunov exponents and rotation numbers, depend on the coefficients in a very strong way. That is, they are not only continuous in coefficients with respect to the usual L p topologies, but also with respect to the weak topologies of the L p spaces. The continuity results of this paper are a basis to study these quantities in a quantitative way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitan, B. M., Sargsjan, L. S.: Sturm-Liouville and Dirac Operators, Math. & Appl. (Soviet Ser.), Vol. 59, Kluwer Academic Publishers, Dordrecht, 1991

    Google Scholar 

  2. Pöschel, J., Trubowitz, E.: The Inverse Spectral Theory, Academic Press, New York, 1987

    Google Scholar 

  3. Ortega, R.: The first interval of stability of a periodic equation of Duffing type. Proc. Amer. Math. Soc., 115, 1061–1067 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, M.: Continuity in weak topology: higher order linear systems of ODE. Sci. China Ser. A, 51, 1036–1058 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gordon, C., Webb, D. L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Amer. Math. Soc. (N. S.), 27, 134–138 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, M. F.: Spectral gap and logarithmic Sobolev constant for continuous spin systems. Acta Mathematica Sinica, English Series, 24, 705–736 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Halas, Z., Tvrdý, M.: Approximated solutions of generalized linear differential equations, Preprint, 2008, http://www.math.cas.cz/tvrdy/publ-iso1.html#preprints

  8. Tvrdý, M.: Differential and integral equations in the space of regulated functions. Mem. Differential Equations Math. Phys., 25, 1–104 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Zhang, M.: Extremal values of smallest eigenvalues of Hill’s operators with potentials in L 1 balls. J. Differential Equations, 246, 4188–4220 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wei, Q., Meng, G., Zhang, M.: Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L 1 balls. J. Differential Equations, 247, 364–400 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dunford, N., Schwartz, J. T.: Linear Operators, Part I, Interscience, New York, 1958

    Google Scholar 

  12. Gan, S., Zhang, M.: Resonance pockets of Hill’s equations with two-step potentials. SIAM J. Math. Anal., 32, 651–664 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. London Math. Soc. (2), 64, 125–143 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hale, J. K.: Ordinary Differential Equations, 2nd ed., Wiley, New York, 1969

    MATH  Google Scholar 

  15. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995

    MATH  Google Scholar 

  16. Karaa, S.: Sharp estimates for the eigenvalues of some differential equations. SIAM J. Math. Anal., 29, 1279–1300 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krein, M. G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, AMS Translations, Ser. 2, Vol. 1, 1955, 163–187

    MathSciNet  Google Scholar 

  18. Zhang, M.: Sobolev inequalities and ellipticity of planar linear Hamiltonian systems. Adv. Nonlinear Stud., 8, 633–654 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Meng.

Additional information

The second author is supported by National Basic Research Program of China (Grant No. 2006CB805903) and National Natural Science Foundation of China (Grant Nos. 10325102 and 10531010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, G., Zhang, M.R. Continuity in weak topology: First order linear systems of ODE. Acta. Math. Sin.-English Ser. 26, 1287–1298 (2010). https://doi.org/10.1007/s10114-010-8103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-010-8103-x

Keywords

MR(2000) Subject Classification

Navigation