Skip to main content
Log in

Two-dimensional invariant tori in the neighborhood of an elliptic equilibrium of Hamiltonian systems

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript


In this paper, we prove that a Hamiltonian system possesses either a four-dimensional invariant disc or an invariant Cantor set with positive (n + 2)-dimensional Lebesgue measure in the neighborhood of an elliptic equilibrium provided that its linearized system at the equilibrium satisfies some small divisor conditions. Both of the invariant sets are foliated by two-dimensional invariant tori carrying quasi-periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Melnikov, V. K.: On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function. Soviet Math. Dokl., 6, 1592–1596 (1965)

    Google Scholar 

  2. Eliasson, L. H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa, 15, 115–147 (1988)

    MATH  MathSciNet  Google Scholar 

  3. Kuksin, S. B.: Nearly Integrable Infinite Dimensional Hamiltonian Systems, Lecture Notes in Math., 1556, Springer-Verlag, Berlin, 1993

    MATH  Google Scholar 

  4. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z., 202, 559–608 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Herman, M. R.: Some Open Problems in Dynamical Systems, Doc. Math. J. DMV, Extra Volume ICM II, 797–808, 1998

  6. Rüssmann, H.: Über die Normalform analytischer Hamiltonscher Differential gleichungen in der Nähe einer Gleichgewichtslösung. Math. Annalen, 169, 55–72 (1967)

    Article  MATH  Google Scholar 

  7. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regular and Chaotic Dynamics, 6(2), 119–204 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Broer, H., Huitema, G. B., Sevryuk, M. B.: Quasi-periodic Motions in Families of Dynamical Systems, Springer, Lecture Notes in Mathematics, 1645, 1996

  9. Marmi, S., Yoccoz, J.-C.: Some Open Problems Related To Small Divisors, Lecture Notes in Mathematics, 1784, 175–191, 2002

  10. Xu, J. X., You, J. G., Qiu, Q. J.: Invariant tori of nearly integrable Hamiltonian systems with degeneracy. Math. Z., 226, 375–387 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sevryuk, M. B.: KAM-stable Hamiltonians. J. Dyn. Control Syst., 1, 351–366 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat. Math. Res. Notices, 11, 475–497 (1994)

    Article  MathSciNet  Google Scholar 

  13. Bourgain, J.: On Melnikovs persistency problem. Math. Res. Lett., 4, 445–458 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Xu, J. X., You, J. G.: Persistence of lower-dimensional tori under the first Melnikovs non-resonance condition. J. Math. Pures Appl., 1045–1067 (2001)

  15. Rüssmann, H.: Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition. Ergod. Th. & Dynam. Sys., 22, 1551–1573 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hui Lu.

Additional information

Supported by NNSF of China (Grant 10531050) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070284004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., You, J.G. Two-dimensional invariant tori in the neighborhood of an elliptic equilibrium of Hamiltonian systems. Acta. Math. Sin.-English Ser. 25, 1363–1378 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


MR(2000) Subject Classification