Abstract
By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation
, on a time scale \( \mathbb{T} \). The results improve some oscillation results for neutral delay dynamic equations and in the special case when \( \mathbb{T} \) = ℝ our results cover and improve the oscillation results for second-order neutral delay differential equations established by Li and Liu [Canad. J. Math., 48 (1996), 871–886]. When \( \mathbb{T} \) = ℕ, our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh [Comp. Math. Appl., 36 (1998), 123–132]. When \( \mathbb{T} \) =hℕ, \( \mathbb{T} \) = {t: t = q k, k ∈ ℕ, q > 1}, \( \mathbb{T} \) = ℕ2 = {t 2: t ∈ ℕ}, \( \mathbb{T} \) = \( \mathbb{T}_n \) = {t n = Σ n k=1 \( \tfrac{1} {k} \), n ∈ ℕ0}, \( \mathbb{T} \) ={t 2: t ∈ ℕ}, \( \mathbb{T} \) = {√n: n ∈ ℕ0} and \( \mathbb{T} \) ={\( \sqrt[3]{n} \): n ∈ ℕ0} our results are essentially new. Some examples illustrating our main results are given.
Similar content being viewed by others
References
Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math., 18, 18–56 (1990)
Agarwal, R. P., Bohner, M. O’Regan, D., Peterson, A.: Dynamic equations on time scales: A survey. J. Comp. Appl. Math., Special Issue on Dynamic Equations on Time Scales, edited by R. P. Agarwal, M. Bohner, and D. O’Regan, (Preprint in Ulmer Seminare 5), 141(1–2), 1–26 (2002)
Kac, V., Cheung, P.: Quantum Calculus, Springer, New York, 2001
Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001
Spedding, V.: Taming Nature’s Numbers. New Scientist. 19, 28–31 (2003)
Agarwal, R. P., O’Regan, D., Saker, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. and Appl., 300, 203–217 (2004)
Saker, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comp. Appl. Math., 187, 123–141 (2006)
Şahiner, Y.: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales. Adv. Difference Eqns., 2006, 1–9 (2006)
Wu, H., Wu, Zhuang, R. K., Mathsen, R. M.: Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comp., 178, 321–331 (2006)
Agarwal, R. P., O’Regan, D., Saker, S. H.: Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Analysis, 86, 1–17 (2007)
Saker, S. H.: Hille and Nehari types oscillation criteria for second-order neutral delay dynamic equations. Dyn. Cont. Disc. Imp. Sys, (accepted)
Saker, S. H.: Oscillation of second-order delay and neutral delay dynamic equations on time scales. Dyn. Syst. & Appl., 16, 345–360 (2007)
Mathsen, R. M., Wang, Q. R., Wu, H. W.: Oscillation for neutral dynamic functional equations on time scales. J. Diff. Eqns. Appl., 10, 651–659 (2004)
Saker, S. H.: Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type. Dyn. Syst. & Appl., 15, 629–644 (2006)
Li, H. J.: Oscillation criteria for second order linear differential equations. J. Math. Anal. Appl., 194, 312–321 (1995)
Li, H. J., Liu, W. L.: Oscillation criteria for second order neutral differential equations. Canad. J. Math., 48, 871–886 (1996)
Li, H. J., Yeh, C. C.: Oscillation criteria for second-order neutral delay difference equations. Comp. Math. Appl., 36, 123–132 (1998)
Bohner, E. Akin, Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Ineq. Pure Appl. Math., 6, 1–23 (2005)
Bohner, M., Stević, S.: Asymptotic behavior of second-order dynamic equations. Appl. Math. Comp., 188, 1503–1512 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saker, S.H., O’regan, D. & Agarwal, R.P. Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales. Acta. Math. Sin.-English Ser. 24, 1409–1432 (2008). https://doi.org/10.1007/s10114-008-7090-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10114-008-7090-7