Skip to main content
Log in

Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation

$$ [r(t)[y(t) + p(t)y(\tau (t))]^\Delta ]^\Delta + q(t)f(y(\delta (t))) = 0 $$

, on a time scale \( \mathbb{T} \). The results improve some oscillation results for neutral delay dynamic equations and in the special case when \( \mathbb{T} \) = ℝ our results cover and improve the oscillation results for second-order neutral delay differential equations established by Li and Liu [Canad. J. Math., 48 (1996), 871–886]. When \( \mathbb{T} \) = ℕ, our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh [Comp. Math. Appl., 36 (1998), 123–132]. When \( \mathbb{T} \) =hℕ, \( \mathbb{T} \) = {t: t = q k, k ∈ ℕ, q > 1}, \( \mathbb{T} \) = ℕ2 = {t 2: t ∈ ℕ}, \( \mathbb{T} \) = \( \mathbb{T}_n \) = {t n = Σ n k=1 \( \tfrac{1} {k} \), n ∈ ℕ0}, \( \mathbb{T} \) ={t 2: t ∈ ℕ}, \( \mathbb{T} \) = {√n: n ∈ ℕ0} and \( \mathbb{T} \) ={\( \sqrt[3]{n} \): n ∈ ℕ0} our results are essentially new. Some examples illustrating our main results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math., 18, 18–56 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Agarwal, R. P., Bohner, M. O’Regan, D., Peterson, A.: Dynamic equations on time scales: A survey. J. Comp. Appl. Math., Special Issue on Dynamic Equations on Time Scales, edited by R. P. Agarwal, M. Bohner, and D. O’Regan, (Preprint in Ulmer Seminare 5), 141(1–2), 1–26 (2002)

  3. Kac, V., Cheung, P.: Quantum Calculus, Springer, New York, 2001

    Google Scholar 

  4. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001

    MATH  Google Scholar 

  5. Spedding, V.: Taming Nature’s Numbers. New Scientist. 19, 28–31 (2003)

    Google Scholar 

  6. Agarwal, R. P., O’Regan, D., Saker, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. and Appl., 300, 203–217 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Saker, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comp. Appl. Math., 187, 123–141 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Şahiner, Y.: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales. Adv. Difference Eqns., 2006, 1–9 (2006)

    Google Scholar 

  9. Wu, H., Wu, Zhuang, R. K., Mathsen, R. M.: Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comp., 178, 321–331 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Agarwal, R. P., O’Regan, D., Saker, S. H.: Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Analysis, 86, 1–17 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Saker, S. H.: Hille and Nehari types oscillation criteria for second-order neutral delay dynamic equations. Dyn. Cont. Disc. Imp. Sys, (accepted)

  12. Saker, S. H.: Oscillation of second-order delay and neutral delay dynamic equations on time scales. Dyn. Syst. & Appl., 16, 345–360 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Mathsen, R. M., Wang, Q. R., Wu, H. W.: Oscillation for neutral dynamic functional equations on time scales. J. Diff. Eqns. Appl., 10, 651–659 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Saker, S. H.: Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type. Dyn. Syst. & Appl., 15, 629–644 (2006)

    MathSciNet  Google Scholar 

  15. Li, H. J.: Oscillation criteria for second order linear differential equations. J. Math. Anal. Appl., 194, 312–321 (1995)

    Article  Google Scholar 

  16. Li, H. J., Liu, W. L.: Oscillation criteria for second order neutral differential equations. Canad. J. Math., 48, 871–886 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Li, H. J., Yeh, C. C.: Oscillation criteria for second-order neutral delay difference equations. Comp. Math. Appl., 36, 123–132 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bohner, E. Akin, Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Ineq. Pure Appl. Math., 6, 1–23 (2005)

    MathSciNet  Google Scholar 

  19. Bohner, M., Stević, S.: Asymptotic behavior of second-order dynamic equations. Appl. Math. Comp., 188, 1503–1512 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir H. Saker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saker, S.H., O’regan, D. & Agarwal, R.P. Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales. Acta. Math. Sin.-English Ser. 24, 1409–1432 (2008). https://doi.org/10.1007/s10114-008-7090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-008-7090-7

Keywords

MR(2000) Subject Classification

Navigation