Skip to main content

Bahadur representation of nonparametric M-estimators for spatial processes

Abstract

Under some mild conditions, we establish a strong Bahadur representation of a general class of nonparametric local linear M-estimators for mixing processes on a random field. If the so-called optimal bandwidth h n = O(|n|−1/5), nZ d, is chosen, then the remainder rates in the Bahadur representation for the local M-estimators of the regression function and its derivative are of order O(|n|−4/5 log |n|). Moreover, we derive some asymptotic properties for the nonparametric local linear M-estimators as applications of our result.

This is a preview of subscription content, access via your institution.

References

  1. Fan, J., Gijbels, I.: Local polynomial modelling and its applications, Chapman and Hall, London, 1996

    MATH  Google Scholar 

  2. Fan, J., Jiang, J.: Variable bandwidth and one-step local M-estimator. Sci. China Ser. A, 43, 65–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Jiang, J., Mack, Y. P.: Robust local polynomial regression for dependent data. Statist. Sinica, 11, 705–722 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Cai, Z., Ould-Saïd, E.: LocalM-estimator for nonparametric time series. Statist. Probab. Lett., 65, 433–449(2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lin, L.: Robust depth-weighted wavelet for nonparametric regression models. Acta Mathematica Sinica, English Series, 21(3), 585–592 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tran, L.T.: Kernel density estimation on random fields. J. Multi. Analy., 34, 37–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hallin, M., Lu, Z., Tran, L.T.: Local linear spatial regression. Ann. Statist., 32, 2469–2500 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lu, Z., Chen, X.: Spatial kernel regression estimation: weak consistency. Statist. Probab. Lett., 68, 125–136 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin, Z. Y., Li, D. G., Gao, J. T.: Local linear M-estimators for spatial processes, Technical report available at www.maths.uwa.edu.au/:_jiti/llg.pdf, 2007

  10. Hong, S. Y.: Bahadur representation and its applications for local polynomial estimates in nonparametric M-estimation. J. Nonparametric Statist., 52, 237–251 (2003)

    Article  Google Scholar 

  11. Cheng, Y., Gooijer, J.: Bahadur representation for the nonparametric M-estimator under α-mixing dependence. Tinbergen Institute Discussion Paper, Department of Quantitative Economics, Faculty of Economics and Econometrics, University of Amsterdam, 2005

  12. Pham, T. D., Tran, L. T.: Some strong mixing properties of time series models. Stoch. Proc. Their Appl., 19, 297–303 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yao, Q. W.: Exponential inequalities for spatial processes and uniform convergence rates for density estimation, In Development of modern Statistics and Related Topics — In Celebration of Prof. Yaoting Zhang’s 70th Birthday, Zhang, H. and Huang, J. (edit.), World Scientific, Singapore, 118–128, 2003

    Google Scholar 

  14. Lee, Y. K., Choi, H., Park, B. U., Yu, K. S.: Local likelihood density estimation on random fields. Statist. Probab. Lett., 68, 347–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Niemiro, W.: Asymptotics for M-estimators defined by convex minimization. Ann. Statist., 20, 1514–1533 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ortega, J. M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Chen.

Additional information

Supported by National Natural Science Foundation of China (No. 10771192)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Li, D.G. & Zhang, L.X. Bahadur representation of nonparametric M-estimators for spatial processes. Acta. Math. Sin.-English Ser. 24, 1871–1882 (2008). https://doi.org/10.1007/s10114-008-6589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-008-6589-2

Keywords

MR(2000) Subject Classification