Skip to main content
Log in

On the weighted elliptic problems involving multi-singular potentials and multi-critical exponents

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Suppose Ω ⊂ ℝN(N ≥ 3) is a smooth bounded domain, \( \xi _i \in \Omega , 0 < a_i < \sqrt {\bar \mu } , \bar \mu : = \left( {\frac{{N - 2}} {2}} \right)^2 ,0 \leqslant \mu _i < \left( {\sqrt {\bar \mu } - a_i } \right)^2 , a_i < b_i < a_i + 1 \) and \( p_i : = \frac{{2N}} {{N - 2(1 + a_i - b_i )}} \) are the weighted critical Hardy-Sobolev exponents, i = 1, 2,…, k, k ≥ 2. We deal with the conditions that ensure the existence of positive solutions to the multi-singular and multi-critical elliptic problem

$$ \sum\limits_{i = 1}^k {\left( { - div(|x - \xi _i |^{ - 2a_i } \nabla u) - \frac{{\mu _i u}} {{|x - \xi _i |^{2(1 + a_i )} }} - \frac{{u^{p_i - 1} }} {{|x - \xi _i |^{b_i p_i } }}} \right)} = 0 $$

with Dirichlet boundary condition, which involves the weighted Hardy inequality and the weighted Hardy-Sobolev inequality. The results depend crucially on the parameters a i , b i and μ i , i = 1, 2,…, k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequality with weights. Compos. Math., 53(3), 259–275 (1984)

    MATH  MathSciNet  Google Scholar 

  2. Catrina, F., Wang, Z.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extermal functions. Comm. Pure Appl. Math., 54(1), 229–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chou, K., Chu, C.: On the best constant for a weighted Hardy-Sobolev inequality. J. London Math. Soc., 48(1), 137–151 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao, D., Han P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differential Equations, 205(2), 521–537 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, D., Han, P.: Solutions to critical elliptic equations with multi-singular inverse square potentials. J. Differential Equations, 224(2), 332–372 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao, D., He, X., Peng, S.: Positive solutions for some singular critical growth nonlinear elliptic equations. Nonlinear Anal., 60(3), 589–609 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Cao, D., Peng, S.: A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differential Equations, 193(2), 424–434 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J.: Existence of solutions for a nonlinear PDE with an inverse square potential. J. Differential Equations, 195(2), 497–519 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ekeland, I., Ghoussoub, N.: Selected new aspects of the calculus of variations in the large. Bull. Amer. Math. Soc., 39(2), 207–265 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm. Partial Differential Equations, 31(1), 469–495 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferrero, A., Gazzola, F.: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differential Equations, 177(2), 494–522 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gao, W., Peng, S.: An elliptic equation with combined critical Hardy-Sobolev terms. Nonlinear Anal., 65(8), 1595–1612 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jannelli, E.: The role played by space dimension in elliptic critical problems. J. Differential Equations, 156(2), 407–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kang, D., Peng, S.: Existence of solutions for elliptic equations with critical Hardy-Sobolev exponents. Nonlinear Anal., 56(8), 1151–1164 (2004)

    Article  MathSciNet  Google Scholar 

  15. Smets, D.: Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Amer. Math. Soc., 357(7), 2909–2938 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Terracini, S.: On positive solutions to a class equations with a singular coefficient and critical exponent. Adv. Differential Equations, 1(2), 241–264 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Garcia, J., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations, 144(2), 441–476 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc., 352(12), 5703–5743 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Han, P.: Quasilinear elliptic problems with critical exponents and Hardy terms. Nonlinear Anal., 61(5), 735–758 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kang, D.: On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms. Nonlinear Anal., 68(7), 1973–1985 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiong, H., Shen, Y. T.: Nonlinear biharmonic equations with critical potential. Acta Mathematica Sinica, English Series, 21(6), 1285–1294 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gazzola, F., Grunau, H., Mitidieri, E.: Hardy inequalities with optional constants and remainder terms. Trans. Amer. Math. Soc., 356(6), 2149–2168 (2003)

    Article  MathSciNet  Google Scholar 

  23. Kang, D.: On the elliptic problems with critical weighted Sobolev-Hardy exponents. Nonlinear Anal., 66(5), 1037–1050 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ambrosetti, A., Rabinowitz, H.: Dual variational methods in critical point theory and applications. J. Funct. Anal., 14(4), 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lions, P. L.: The concentration compactness principle in the calculus of variations, the limit case(I). Rev. Mat. Iberoamericana, 1(1), 145–201 (1985)

    MATH  MathSciNet  Google Scholar 

  26. Lions, P. L.: The concentration compactness principle in the calculus of variations, the limit case(II). Rev. Mat. Iberoamericana, 1(2), 45–121 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sheng Kang.

Additional information

This work is supported partly by the National Natural Science Foundation of China (10771219) and the Science Foundation of the SEAC of China (07ZN03)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, D.S. On the weighted elliptic problems involving multi-singular potentials and multi-critical exponents. Acta. Math. Sin.-English Ser. 25, 435–444 (2009). https://doi.org/10.1007/s10114-008-6450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-008-6450-7

Keywords

MR(2000) Subject Classification

Navigation