Skip to main content
Log in

Subcritical, critical and supercritical size distributions in random coagulation-fragmentation processes

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We consider the asymptotic probability distribution of the size of a reversible random coagula-tion-fragmentation process in the thermodynamic limit. We prove that the distributions of small, medium and the largest clusters converge to Gaussian, Poisson and 0–1 distributions in the supercritical stage (post-gelation), respectively. We show also that the mutually dependent distributions of clusters will become independent after the occurrence of a gelation transition. Furthermore, it is proved that all the number distributions of clusters are mutually independent at the critical stage (gelation), but the distributions of medium and the largest clusters are mutually dependent with positive correlation coefficient in the supercritical stage. When the fragmentation strength goes to zero, there will exist only two types of clusters in the process, one type consists of the smallest clusters, the other is the largest one which has a size nearly equal to the volume (total number of units).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smoluchowski, M.: Drei Vortrage uber Diffusion, Brownsche Molekular Bewegung und Koagulation von Kolloidteilchen. Physik. Z., 17, 557–585 (1916)

    Google Scholar 

  2. Ziff, R. M., Ernst, M. H., Hendriks, E. M.: Kinetics of gelation and universality. J. Phys. A., 16, 2293–2320 (1983)

    Article  MathSciNet  Google Scholar 

  3. Ball, J. M., Carr, J., Penrose, O.: The Becker-Döring cluster equations: Basic properties and asymptotic behavior of solutions, Commun. Math. Phys., 104, 657–692 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Marcus, A. H.: Stochastic coalescence. Technometrics, 10, 133–143 (1968)

    Article  MathSciNet  Google Scholar 

  5. Lushnikov, A. A.: Certain new aspects of the coagulation theory. Izv. Atm. Ok. Fiz., 14, 738–743 (1978)

    Google Scholar 

  6. Buffet, E., Pulé, J. V.: On the Lushnikov’s model of gelation. J. Stat. Phys., 58, 1041–1058 (1990)

    Article  Google Scholar 

  7. Buffet, E., Pulé, J. V.: Polymers and Random Graphs. J. Stat. Phys., 64, 87–110 (1991)

    Article  MATH  Google Scholar 

  8. Hendriks, E. M., Spouge, J. L., Eibl, M., Schreckenberg, M.: Exact solutions for random coagulation processes. Z. Phys. B. 58, 219–228 (1983)

    Article  Google Scholar 

  9. Bak, T. A., Heilmann, O. J.: Post-gelation solutions to Smoluchowski’s coagulation equation. J. Phys. A: Math. Gen., 27, 4203–4209 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carr, J., da Costa, F. P.: Instantaneous gelation in coagulation dynamics. Z. Angew. Math. Phys., 43, 974–983 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heilmann, O. J.: Analytic solutions of Smoluchowski’s coagulation equation. J. Phys. A: Math. Gen., 25, 3763–3771 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hendriks, E. M., Ernst, M., Ziff, R.: Coagulation equations with gelation. J. Stat. Phys. 31, 519–563

  13. Leyvraz, F.: Existence and properties of post-gel solutions for the kinetic equations of coagulation. J. Phys. A: Math. Gen., 16, 2861–2873 (1983)

    Article  MathSciNet  Google Scholar 

  14. Norris, J.: Smoluchowski’s coagulation equation: Uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab., 9, 78–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. White, W. H.: A global existence theorem for Smoluchowski’s coagulation equation. Proc. Am. Math. Soc., 80, 273–276 (1980)

    Article  MATH  Google Scholar 

  16. Ziff, R. M.: Kinetics of polymerization. J. Stat. Phys., 23, 241–263 (1980)

    Article  MathSciNet  Google Scholar 

  17. Aldous, D. J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli, 5, 3–48 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Flory, P. J.: Principles of Polymer Chemistry, Cornell University Press, Ithaca and London, 1953

    Google Scholar 

  19. Stokymayer, W.: Theory of molecular size distribution and gel formation in branched chain polymers. J. Chem. Phys., 11, 45–55 (1943)

    Article  Google Scholar 

  20. Stockmayer, W. H.: Theory of molecular size distribution and gel formation in branched polymers. II. General cross-linking. J. Chem. Phys., 11, 45–55 (1944)

    Article  Google Scholar 

  21. Van Dongen, P. G. J., Ernst, M. H.: Pre-and postgel size distributions in (ir)reversible polymerization. J. Phys. A: Math. Gen., 16, L327–L332 (1983)

    Article  Google Scholar 

  22. Van Dongen, P. G. J., Ernst, M. H.: Kinetics of reversible polymerization. J. Stat. Phys., 37, 301–324 (1984)

    Article  Google Scholar 

  23. Spouge, J. L.: An existence theorem for the discrete coagulation-fragmentation equations. Math. Proc. Camb. Phil. Soc., 96, 351–357 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ball, J. M., Carr, J.: The discrete coagulation-fragmentation equation: Existence, Uniqueness, and density conservation. J. Stat. Phys., 61, 203–234 (1990)

    Article  MathSciNet  Google Scholar 

  25. Dubovskii, P. B., Stewart, I. W.: Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Methods Appl. Sci., 19, 571–591 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Durrett, R., Granovsky, B., Gueron, S.: The equilibrium behavior of reversible coagulation-fragmentation processes. J. of Theoretical Probab., 12, 447–474 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Eibeck, A., Wagner, W.: Approximative solution of the coagulation-fragmentation equation by stochastic particle systems. Stoch. Anal. Appli., 18, 921–948 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Freiman, G., Granovsky, B.: Asymptotic formula for a partition function of reversible coagulation-fragmentation processes. J. Isr. Math., 130, 259–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Guias, F.: Convergence properties of a stochastic model for coagulation-fragmentation processes with diffusion. Stoch. Anal. Appli., 19, 245–278 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jeon, I.: Existence of gelling solutions for coagulation fragmentation equations. Commun. Math. Phys., 194, 541–567 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Laurenzi, I. J., Diamond, S. L.: Kinetics of random aggregation-fragmentation processes with multiple components. Phy. Rev. E, 67, 1–15 (2003)

    Article  Google Scholar 

  32. Pittel, B., Wovczynski, W. A., Mann, J. A.: Random tree-type partitions as a model for acyclic polymerization: Holtsmark (3/2-stable) distribution of the supercritical gel. Ann. Probab., 18, 319–341 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pittel, B., Wovczynski, W. A., Mann, J. A.: From Gaussion subcritical to Holtsmark (3/2-lévy stable) supercritical asymptotic behavior in “rings forbidden” Flory-Stockmayer model of polymerization, in Graph Theory and Topology in Chemistry, R.B. King and D.H. Rouvray, Eds., Elsevier Science Publishers, Amsterdam, 362–370, 1987

    Google Scholar 

  34. Han, D.: Subcritical asymptotic behavior in the thermodynamic limit of reversible random polymerization process. J. Stat. Phys., 80, 389–404 (1995)

    Article  MATH  Google Scholar 

  35. Han, D.: A necessary and sufficient condition for gelation of a reversible Markov process of polymerization. J. Physics A: Math. Gen., 36, 893–909 (2003)

    Article  MATH  Google Scholar 

  36. Han, D.: The asymptotic distributions of the size of the largest length of a reversible Markov process of polymerization. J. Physics A: Math. Gen., 36, 7485–7496 (2003)

    Article  MATH  Google Scholar 

  37. Van Dongen, P. G. J., Ernst, M. H.: Size distribution in the polymerization model A f RB g. J. Phys. A: Math., 17, 2281–2297 (1984)

    Article  Google Scholar 

  38. Uchaikin, V. V., Zolotarev, V. M.: Chance and Stability, Stable Distributions and Their Applications: Modern Probability and Statistics, VSP. Intl. Science, Leiden, 1999

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Han.

Additional information

This research is supported by National Science Foundation of China (10371074)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Zhang, X.S. & Zheng, W.A. Subcritical, critical and supercritical size distributions in random coagulation-fragmentation processes. Acta. Math. Sin.-English Ser. 24, 121–138 (2008). https://doi.org/10.1007/s10114-007-0978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-007-0978-9

Keywords

MR(2000) Subject Classification

Navigation