Skip to main content
Log in

Convergence to Diffusion Waves for Nonlinear Evolution Equations with Ellipticity and Damping, and with Different End States

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects:

$$ \left\{ {\begin{array}{*{20}l} {{\psi _{t} } \hfill} & {{ = - {\left( {1 - \alpha } \right)}\psi - \theta _{x} + \alpha \psi _{{xx}} ,} \hfill} \\ {{\theta _{t} } \hfill} & {{ = - {\left( {1 - \alpha } \right)}\theta + \nu \psi _{x} + {\left( {\psi \theta } \right)}_{x} + \alpha \theta _{{xx}} ,} \hfill} \\ \end{array} } \right. $$
((E))

with initial data

$$ \left( \psi,\theta \right)\left( {x,0} \right) = \left( \psi _{0} \left( x \right),\theta _{0} \left( x \right) \right) \to \left( \psi _\pm ,\theta _\pm \right)\;{\rm as}\;x \to \pm \infty $$
((I))

where α and ν are positive constants such that α < 1, ν < 4α(1 − α). Under the assumption that \( \left| \psi_{ + } - \psi_{ - } \right| + \left| \theta _{ + } - \theta _{ - } \right| \) is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsiao, L., Jian, H. Y.: Global smooth solutions to the spatically periodic Cauchy problem for dissipative nonlinear evolution equations. J. Math. Anal. Appl., 213, 262–274 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jian, H. Y., Chen, D. G.: On the Cauchy problem for certain system of semilinear parabolic equations. Acta Math. Sinica, New Series, 14, 27–34 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Hsieh, D. Y.: On partial differential equations related to Lorenz system. J. Math. Phys., 28, 1589–1597 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Tang, S. Q.: Dissipative Nonlinear Evolution Equations and Chaos, PhD Thesis, Hong Kong Univ. Sci. Tech., 1995

  5. Lorenz, E. N.: Deterministic non–periodic flows. J. Atom. Sci., 20, 130–141 (1963)

    Article  Google Scholar 

  6. Tang, S. Q., Zhao, H. J.: Nonlinear stability for dissipative nonlinear evolution equations with ellipticity. J. Math. Anal. Appl., 233, 336–358 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhu, C. J., Wang, Z. A.: Decay rates of solutions to dissipative nonlinear evolution equations with ellipticity. Z. angew. Math. Phys., 55, 994–1014 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duan, R. J., Zhu, C. J.: Asymptotics of dissipative nonlinear evolution equations with ellipticity: Different end states. J. Math. Anal. Appl., 303, 15–35 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsieh, D. Y., Tang, S. Q., Wang, X. P.: On hydrodynamic insability, Chaos, and phase transition. Acta Mech. Sinica, 12, 1–14 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Keefe, L. R.: Dynamics of perturbed wavetrain solutions to the Ginzberg–Landau equation. Stud. Appl. Math., 73, 91–153 (1985)

    MATH  MathSciNet  Google Scholar 

  11. Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction–diffusion systems. Progr. Theoret. Phys., 54, 687–699 (1975)

    Article  Google Scholar 

  12. Hsiao, L., Liu, T. P.: Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Commun. Math. Phys., 143, 599–605 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nishihara, K.: Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping. J. Differential Equations, 131, 171–188 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhu, C. J.: Asymptotic behavior of solutions for p–system with relaxation. J. Differential Equations, 180, 273–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding, X. X., Wang, J. H.: Global solution for a semilinear parabolic system. Acta Math. Sci., 3, 397–412 (1983)

    MATH  Google Scholar 

  16. Matsumura, A., Nishihara, K.: Asymptotics toward the rarefaction waves of the solutions of a onedimensional model system for compressible viscous gas. Japan J. Appl. Math., 3, 1–13 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhao, H. J.: Nonlinear stability of strong planar rarefaction waves for the relaxation approximation of conservation laws in several space dimensions. J. Differential Equations, 163, 198–222 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Jiang Zhu.

Additional information

The research is supported by Program for New Century Excellent Talents in University #NCET–04–0745, the Key Project of the National Natural Science Foundation of China #10431060 and the Key Project of Chinese Ministry of Education #104128

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C.J., Zhang, Z.Y. & Yin, H. Convergence to Diffusion Waves for Nonlinear Evolution Equations with Ellipticity and Damping, and with Different End States. Acta Math Sinica 22, 1357–1370 (2006). https://doi.org/10.1007/s10114-005-0728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0728-9

Keywords

MR (2000) Subject Classification

Navigation