Skip to main content
Log in

The Density of Linear Symplectic Cocycles with Simple Lyapunov Spectrum in \({\fancyscript G}\) IC (X, SL(2,ℝ))

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

Let (X, \({\mathfrak{S}}\) (X), \({\mathfrak{m}})\) be a probability space with σ-algebra , \({\mathfrak{S}}\)(X) and probability measure \({\mathfrak{m}}.\) The set V in \({\mathfrak{S}}\)is called P-admissible, provided that for any positive integer n and positive-measure set V n \({\mathfrak{S}}\) contained in V , there exists a Z n \({\mathfrak{S}}\) such that Z n V n and 0 < \({\mathfrak{m}}\)(Z n ) < 1/n. Let T be an ergodic automorphism of (X, \({\mathfrak{S}})\) preserving \({\mathfrak{m}},\) and A belong to the space of linear measurable symplectic cocycles

\({\fancyscript G}\) IC (X, SL(2,ℝ)) := {A : XSL(2,ℝ)| log ∥A ±1(x)∥ ∈ \({\Bbb L}\) 1(X, \({\mathfrak{m}}).\)

We prove that for any P–admissible set V and ε > 0, there exists a B\({\fancyscript G}\) IC (X, SL(2,ℝ)) such that

max{∥A(x) − B(x)∥, ∥A −1(x) − B −1(x)∥} < ε for all xV, A(x) = B(x) for all xX \ V,

and B has the simple Lyapunov spectrum over the system (X, \({\mathfrak{m}},\) T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L.: Random Dynamical Systems, Springer-Verlag, New York, Berlin, 1998

  2. Arnold, L., Cong, N. D.: Linear cocycles with simple Lyapunov spectrum are dense in L . Ergod. Th. & Dynam. Sys., 19, 1389–1404 (1999)

    Article  MATH  Google Scholar 

  3. Knill, O.: Positive Lyapunov exponents for a dense set of bounded measurable SL(2,ℝ)-cocycles. Ergod. Th. & Dynam. Sys., 12, 319–331 (1992)

    MATH  MathSciNet  Google Scholar 

  4. Oseledec, V. I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mos. Math. Soc., 19, 197–221 (1968)

    MathSciNet  Google Scholar 

  5. Cornfeld, I. P., Fomim, S. I., Sinai, Ya.: Ergodic Theory, Springer-Verlag, New York, Berlin, 1982

  6. Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergod. Th. & Dynam. Sys., 5, 145–161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Herman, M. R.: Une méthode pour minorer les exposants de Lyapunov et quelques montrant le caractère local d’un théorème d’Arnold et Moser sur le tore de dimension 2. Comment. Math. Helv., 58, 543–502 (1983)

    Article  MathSciNet  Google Scholar 

  8. Rohlin, V. A.: Selected topics in the metric theory of dynamical systems. Amer. Math. Soc. Transl. Ser. 2, 49, 171–240 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Ping Dai.

Additional information

Supported by NSF Grant C19901029

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X.P. The Density of Linear Symplectic Cocycles with Simple Lyapunov Spectrum in \({\fancyscript G}\) IC (X, SL(2,ℝ)). Acta Math Sinica 22, 301–310 (2006). https://doi.org/10.1007/s10114-005-0571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0571-z

Keywords

MR (2000) Subject Classification

Navigation