Skip to main content
Log in

Second Order Nonlinear Evolution Inclusions II: Structure of the Solution Set

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

We continue the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-966 (2005)) and study the structural properties of the solution set of second order evolution inclusions which are defined in the analytic framework of the evolution triple. For the convex problem we show that the solution set is compact R δ , while for the nonconvex problem we show that it is path connected. Also we show that the solution set is closed only if the multivalued nonlinearity is convex valued. Finally we illustrate the results by considering a nonlinear hyperbolic problem with discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papageorgiou, N. S., Yannakakis, N.: Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977–996 (2005)

    Article  MATH  Google Scholar 

  2. Ahmed, N. U., Kerbal, S. : Optimal control of nonlinear second order evolution equations. J. Appl. Math. Stoch. Anal., 6, 123–136 (1993)

    MATH  Google Scholar 

  3. Gasinski, L., Smolka, M.: An existence theorem for wave-type hyperbolic hemivariational inequalities. Math. Nachr., 242, 79–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kartsatos, A., Markov, L.: An L 2-approach to second order nonlinear evolutions involving m-accrative operators in Banach spaces. Diff. Integral Eqns., 14, 833–866 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Migorski, S.: Existence, variational and optimal control problems for nonlinear second order evolution inclusions. Dynam. Syst. and Appl., 4, 513–528 (1995)

    MATH  MathSciNet  Google Scholar 

  6. De Blasi, F. S., Myjak, J. : On the solution sets for differential inclusions. Bull. Acad. Polon. Sci., 33, 17–23 (1985)

    MATH  MathSciNet  Google Scholar 

  7. Gorniewicz, L.: On the solution sets of di.erential inclusions. J. Math. Anal. Appl., 113, 235–244 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Papageorgiou, N. S.: On the solution set of differential inclusions in Banach space. Appl. Anal., 25, 319–329 (1987)

    MATH  MathSciNet  Google Scholar 

  9. Plaskacz, S.: On the solution sets of differential inclusions. Bolletino UMI, 6(A), 387–394 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Dragoni, R., Macki, J., Nistri, P., Zecca, P. : Solution Sets of Differential Equations in Abstract Spaces, Longman, Essex, UK, 1996

  11. Conti, G., Obukhovskii, V., Zecca, P. : On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, in Topology in Nonlinear Analysis, Banach Center Publications, Vol. 35, Polish Academy of Sciences, Warsaw, 1–11, 1996

  12. De Blasi, F. S., Pianigiani, G., Staicu, V.: Topological properties of nonconvex di.erential inclusions of evolution type. Nonlin. Anal., 24, 711–720 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, S., Lakshmikantham, V., Papageorgiou, N. S.: On the properties of the solution set of semilinear evolution inclusions. Nonlin. Anal., 24, 1683–1712 (1995)

    Article  MATH  Google Scholar 

  14. Papageorgiou, N. S., Shahzad, N.: Properties of the solution set of nonlinear evolution inclusions. Appl. Math. Optim., 36, 1–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hyman, D. M.: On decreasing sequences of compact absolute retracts. Fund. Math., 64, 91–97 (1969)

    MATH  MathSciNet  Google Scholar 

  16. Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis, Volume II: Applications, Kluwer, Dordrecht, The Netherlands, 2000

  17. Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, The Netherlands, 1997

  18. De Blasi, F. S., Pianigiani, G.: Hausdor. measurable multifunctions. J. Math. Anal. Appl., 228, 1–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasry, J. M., Robert, R.: Acyclicite de l’ensemble des solutions des certains equations fonctionelles. CRAS Paris, t., 282, 1283–1286 (1976)

    MATH  MathSciNet  Google Scholar 

  20. Brezis, H. : Operateurs Maximaux Monotones, North-Holland, Amsterdam, 1973

  21. Bressan, A., Cellina, A., Fryszkowski, A. : On a class of absolute retracts in spaces of integrable functions. Proc. AMS, 111, 413–418 (1991)

    Article  MathSciNet  Google Scholar 

  22. Kuratowski: Topology II, Acad. Press, New York, 1968

  23. Rzezuchowski, T.: Scorza-Dragoni type theorem for upper semicontinuous multivalued functions. Bull. Acad. Polon. Sci., 28, 61–66 (1980)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos S. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papageorgiou, N.S., Yannakakis, N. Second Order Nonlinear Evolution Inclusions II: Structure of the Solution Set. Acta Math Sinica 22, 195–206 (2006). https://doi.org/10.1007/s10114-004-0509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-004-0509-x

Keywords

MR (2000) Subject Classification

Navigation