Skip to main content
Log in

Existence and Stability of Positive Solutions for an Elliptic Cooperative System

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

By discussing the properties of a linear cooperative system, the necessary and sufficient conditions for the existence of positive solutions of an elliptic cooperative system in terms of the principal eigenvalue of the associated linear system are established, and some local stability results for the positive solutions are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, H. L.: Cooperative systems of differential equations with concave nonlinearities. Nonlinear Anal. TMA, 10, 1037–1052 (1986)

    Article  Google Scholar 

  2. Arino, O., Montero, J. A.: Optimal control of a nonlinear elliptic population system. Proc. Edinburgh Math. Soc., 116, 225–241 (2000)

    MathSciNet  Google Scholar 

  3. Canada, A., Magal, P., Montero, J. A.: Optimal control of harvesting in a nonlinear elliptic system arising from population dynamics. J. Math. Anal. Appl., 254, 571–586 (2001)

    Article  MathSciNet  Google Scholar 

  4. Brown, K. J., Zhang, Y.: On a system of reaction–diffusion equations describing a population with two age–groups, preprint, 2002

  5. Molina–meyer, M.: Existence and uniqueness of coexistence states for some nonlinear elliptic systems. Nonlinear Anal. TMA, 25, 279–296 (1995)

    Article  MathSciNet  Google Scholar 

  6. Molina–meyer, M.: Global attractivity and singular perturbation for a class of nonlinear cooperative systems. J. Differential Equation, 128, 347–378 (1996)

    Article  MathSciNet  Google Scholar 

  7. Costa, D. G., Magalhäes, C. A.: A variational approach to subquadratic perturbations of elliptic systems. J. Differential Equations, 111, 103–122 (1994)

    Article  MathSciNet  Google Scholar 

  8. Zou, W. M.: Multiple solutions for asymptotically linear elliptic systems. J. Math. Anal. Appl., 255, 213–229 (2001)

    Article  MathSciNet  Google Scholar 

  9. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev., 18, 620–709 (1976)

    Article  MathSciNet  Google Scholar 

  10. Pao, C. V.: Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992

  11. Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21, 979–1000 (1972)

    Article  MathSciNet  Google Scholar 

  12. Sweers, G.: Strong positivity in C(Ώ) for elliptic systems. Math. Zeit., 209, 251–271 (1992)

    MathSciNet  Google Scholar 

  13. Allegretto, W.: Sturmian theorems for second order systems. Proc. Amer. Math. Soc., 94, 291–296 (1985)

    Article  MathSciNet  Google Scholar 

  14. Cantrell, R. S., Schmidt, K.: On the eigenvalue problems for coupled elliptic systems. SIAM J. Math. Anal., 17, 850–862 (1986)

    Article  MathSciNet  Google Scholar 

  15. López–gómez, J., Molina–meyer, M.: The maximum principle for co–operative weakly coupled elliptic systems and some applications. Differential and Integral Equations, 7, 383–398 (1994)

    MathSciNet  Google Scholar 

  16. Ye, Q., Li, Z.: Introduction to Reaction Diffusion Equations, Science Press, Beijing, 1990 (in Chinese)

  17. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer–Verlag, Berlin/New York, 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jun Hei.

Additional information

Project supported by the National Natural Science Foundation of China (10071048) and Liu Hui Center for Applied Mathematics, Nankai University and Tianjin University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hei, L.J., Wu, J.H. Existence and Stability of Positive Solutions for an Elliptic Cooperative System. Acta Math Sinica 21, 1113–1120 (2005). https://doi.org/10.1007/s10114-004-0467-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-004-0467-3

Keywords

MR (2000) Subject Classification

Navigation