Skip to main content

Advertisement

Log in

Changes in soil carbon and soil carbon sequestration potential under different types of pasture management in Brazil

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

There are currently 180 million hectares under pasture in Brazil, and despite the country being one of the largest meat producers, there remain around 64 million hectares that show signs of degradation and contribute to the substantial loss of soil organic carbon (SOC). The aim of this study, therefore, was to derive the factors for SOC stock changes in managed pastures and evaluate the potential for SOC sequestration when converting degraded pastures to well-managed or recovered pastures in Brazil. The study involved 169 paired comparisons, including different types of pasture spread over 14 states in Brazil, and analysed the data in linear mixed-effect models deriving the SOC stock change factors for various soil depths (30 to 100 cm) over 30 years since the change in management. The results showed that for 30 years at a depth of 0–30 cm, compared to native vegetation, nominal pasture (non-degraded grassland, but with no significant management improvements) and improved pasture increased SOC stocks by 15% and 8%, whilst degraded pastures reduced the stocks by 10%. However, the recovery of degraded pastures enhances the SOC by 23%. In terms of the rates of SOC change, pasture degradation leads to losses of 0.25 Mg C ha−1 year−1, whilst nominal or recovered pastures can sequester SOC at rates from 0.25 to 0.54 Mg ha−1 year−1. Overall, it was estimated that the recovery of degraded pastures can sequester up to 3445 Tg of CO2. Nominal management or simple improvement practices can maintain or enhance SOC stocks, helping to mitigate the GHG emissions of livestock in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABC Plan (2012) Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura: plano ABC (Agricultura de Baixa Emissão de Carbono) / Ministério da Agricultura, Pecuária e Abastecimento, Ministério do Desenvolvimento Agrário, coordenação da Casa Civil da Presidência da República. – Brasília: MAPA/ACS, 2012, p 173

  • ABIEC – Associação Brasileira das Indústrias Exportadoras de Carnes (2020). Beef Report –Perfil da Pecuária no Brasil 2019. http://abiec.com.br/publicacoes/beef-report-2019/. Accessed 05 February 2020

  • Baptista RB (2012) Impacto do sistema de integração lavoura pecuária nos estoques de carbono e nitrogênio em Latossolo vermelho de Santo Antônio de Goiás-GO. Dissertation, Universidade Federal Rural do Rio de Janeiro

  • Barrett DJ (2002) Steady state turnover time of carbon in the Australian terrestrial biosphere. Glob Biogeochem Cycles 16(4):55-1 - 5-21. https://doi.org/10.1029/2002GB001860

  • Bráz SP (2005) Produtividade de pastagens de Brachiaria nas regiãões sudeste e centro-oeste do Brasil e estoque de carbono e nitrogênio no solo. Dissertation, Universidade Federal Rural do Rio de Janeiro

  • Cardoso AS, Berndt A, Leytem A, Alvez BJR, Carvalho INO et al (2016) Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agric Syst 143:86–96. https://doi.org/10.1016/j.agsy.2015.12.007

    Article  Google Scholar 

  • Chaves SSF (2014) Dinâmica do carbono no solo sob diferentes usos da terra em Paragominas, PA. Dissertation, Universidade de São Paulo

  • Conant RT, Cerri CEP, Osborne BB, Paustian K (2017) Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl 27:662–668. https://doi.org/10.1002/eap.1473

    Article  Google Scholar 

  • Costa Junior C (2008) Estoque de carbono e nitrogênio e agregação do solo sob diferentes sistemas de manejo agrícola no Cerrado, em Rio Verde (GO). Dissertation, Universidade de São Paulo

  • de Braz AMS, Fernandes AR, Alleoni LRF (2013) Soil attributes after the conversion from forest to pasture in Amazon. L Degrad Dev 24:33–38. https://doi.org/10.1002/ldr.1100

    Article  Google Scholar 

  • de Medeiros AS, Maia SF, dos Santos TC, de Gomes TCA (2020) Soil carbon losses in conventional farming systems due to land-use change in the Brazilian semi-arid region. Agric Ecosyst Environ 287:106690. https://doi.org/10.1016/j.agee.2019.106690

    Article  Google Scholar 

  • Dias-Filho MB (2017) Degradação de pastagens, o que é e como evitar. Brasília, DF: Embrapa

  • FAO (2015) FAOSTAT. http://faostat.fao.org. Accessed 30 Dec 2017

  • Figueiredo CC, Resck DVS, Carneiro MAC, Ramos MLG, Sá JCM (2013) Stratification ratio of organic matter pools influenced by management systems in a weathered Oxisol from a tropical agro-ecoregion in Brazil. Soil Res 51:133. https://doi.org/10.1071/SR12186

    Article  Google Scholar 

  • Frazão LA (2007) Conversão do Cerrado em pastagem e sistemas agrícolas: efeitos na dinâmica da matéria orgânica do solo. Dissertation, Universidade de São Paulo

  • Fujisaki K, Perrin A, Desjardins T, Bernoux M, Balbino LC et al (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Glob Chang Biol 21:2773–2786. https://doi.org/10.1111/gcb.12906

    Article  Google Scholar 

  • Guareschi RF, Pereira MG, Perin A (2013) Frações da matéria orgânica em áreas de Latossolo sob diferentes sistemas de manejo no Cerrado do estado de Goiás. Semina Ciências Agrárias 34(6):2615–2628. https://doi.org/10.5433/1679-0359

    Article  Google Scholar 

  • IBGE (2017) Censo Agropecuário. https://censos.ibge.gov.br/agro/2017. Accessed May 10 2020

  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IGES, Japan

  • IPCC (2019) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici S (eds) IPCC, Switzerland

  • Lal R (2016) Beyond COP21: potential and challenges of the “4 per Thousand” initiative. J Soil Water Conserv 71:20A-25A. https://doi.org/10.2489/jswc.71.1.20A

    Article  Google Scholar 

  • Lal R (2018) Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Chang Biol 24:3285–3301. https://doi.org/10.1111/gcb.14054

    Article  Google Scholar 

  • LAPIG (2018) Atlas Digital das Pastagens Brasileiras. https://pastagem.org/atlas/map. Accessed May 20 2020

  • Lim SS, Baah-Acheamfour M, Choi WJ, Arshad MA, Fatemi F et al (2018) Soil organic carbon stocks in three Canadian agroforestry systems: from surface organic to deeper mineral soils. For Ecol Manage 417:103–109. https://doi.org/10.1016/j.foreco.2018.02.050

    Article  Google Scholar 

  • Loss A (2011) Dinâmica da matéria orgânica, fertilidade e agregação do solo em áreas sob diferentes sistemas de uso no Cerrado goiano. Dissertation. Universidade Federal Rural do Rio de Janeiro

  • Maia SMF, Ogle SM, Cerri CEP, Cerri CC (2009) Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149:84–91. https://doi.org/10.1016/j.geoderma.2008.11.023

    Article  CAS  Google Scholar 

  • Maia SMF, Carvalho JLN, Cerri CEP, Lal R, Bernoux M et al (2013) Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes. Soil Tillage Res 133:75–84. https://doi.org/10.1016/j.still.2013.06.002

    Article  Google Scholar 

  • Mazzetto AM, Feigl BJ, Schils RLM, Cerri CEP, Cerri CC (2015) Improved pasture and herd management to reduce greenhouse gas emissions from a Brazilian beef production system. Livest Sci 175:101–112. https://doi.org/10.1016/j.livsci.2015.02.014

    Article  Google Scholar 

  • MCTI 2020 - Sistema de Registro Nacional de Emissões – SIRENE. https://sirene.mctic.gov.br/portal/opencms/paineis/2018/08/24/Emissoes_em_dioxido_de_carbono_equivalente_por_setor.html. Accessed August 14 2020

  • Medeiros AS, Maia SMF, Santos TC, Gomes TC (2021) Losses and gains of soil organic carbon in grasslands in the Brazilian semi-arid region. Sci Agric 78:1–4. https://doi.org/10.1590/1678-992x-2019-0076

    Article  CAS  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

    Article  Google Scholar 

  • Nadal-Romero E, Cammeraat E, Pérez-Cardiel E, Lasanta T (2016) How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas? Sci Total Environ 566:741–752. https://doi.org/10.1016/j.scitotenv.2016.05.031

    Article  CAS  Google Scholar 

  • Ogle SM, Conant RT, Paustian K (2004) Deriving grassland management factors for a carbon accounting method developed by the intergovernmental panel on climate change. Environ Manage 33:474–484. https://doi.org/10.1007/s00267-003-9105-6

    Article  Google Scholar 

  • Oliveira DC (2018) Potencial de sequestro de carbono no solo e dinâmica da matéria orgânica em pastagens degradadas no Brasil. Universidade de São Paulo, Thesis

    Book  Google Scholar 

  • Oliveira DMS, Paustian K, Davies CA, Cherubin MR, Franco A et al (2016) Soil carbon changes in areas undergoing expansion of sugarcane into pastures in south-central Brazil. Agric Ecosyst Environ 228:38–48. https://doi.org/10.1016/j.agee.2016.05.005

    Article  Google Scholar 

  • Oliveira SP, Cândido MJD, Weber OB, Xavier FAZ, Escobar MEO et al (2016) Conversion of forest into irrigated pasture I. Changes in the chemical and biological properties of the soil. CATENA 137:508–516. https://doi.org/10.1016/j.catena.2015.10.017

    Article  CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP et al (2016) Climate-smart soils. Nature 532:49–57. https://doi.org/10.1038/nature17174

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D (2000) Mixed-effects models in S and S-PLUS. Springer, New York, NY

    Book  Google Scholar 

  • Sisti CPJ, Dos Santos HP, Kohhann R, Alves BJR, Urquiaga S et al (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res 76:39–58. https://doi.org/10.1016/j.still.2003.08.007

    Article  Google Scholar 

  • Soussana JF, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C et al (2019) Matching policy and science: rationale for the ‘4 per 1000 - soils for food security and climate’ initiative. Soil Tillage Res 188:3–15. https://doi.org/10.1016/j.still.2017.12.002

    Article  Google Scholar 

  • Stumpf L, Pauletto EA, Pinto LFS, Garcia GF, Ambus JV et al (2016) Condição física e desenvolvimento radicular de gramíneas em solo construído após mineração de carvão. Pesq Agropec Bras 51(9):1078–1087. https://doi.org/10.1590/S0100-204X2016000900007

    Article  Google Scholar 

  • West TO, Six J (2007) Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim Change 80:25–41. https://doi.org/10.1007/s10584-006-9173-8

    Article  CAS  Google Scholar 

  • Xu S, Silveira ML, Inglett KS, Sollenberger LE, Gerber S (2016) Effect of land-use conversion on ecosystem C stock and distribution in subtropical grazing lands. Plant Soil 399:233–245. https://doi.org/10.1007/s11104-015-2690-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CNPq for financing this research, and Embrapa for their support with the field collection. D. C Oliveira is grateful to FAPESP for the grant of a PhD scholarship (2014/21273-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoécio Malta Ferreira Maia.

Additional information

Communicated by Beata Madari and accepted by Topical Collection Chief Editor Christopher Reyer.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regional management practices with positive effects on soil carbon to meet the goals of the 4p1000 initiative.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, D.C., Maia, S.M.F., Freitas, R.d.A. et al. Changes in soil carbon and soil carbon sequestration potential under different types of pasture management in Brazil. Reg Environ Change 22, 87 (2022). https://doi.org/10.1007/s10113-022-01945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-022-01945-9

Keywords

Navigation