Skip to main content

Advertisement

Log in

The effectiveness of climate action and land recovery across ecosystems, climatic zones and scales

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Current land-use and climate change patterns lead to disruption in ecosystem services provisioning essential for human well-being. Actions representing alternatives to business-as-usual trend can reduce negative impacts, but their effectiveness across ecosystems, climatic zones and scales is unclear. Here, we analyse how land recovery and climate action can counteract adverse effects of current trends on nature and safeguard provisioning of ecosystem services. Using a meta-analysis approach, we compiled 410 estimates of how land recovery or climate action may alter impacts expected from business-as-usual trends. We show that both alternatives can reduce negative effects on several nature indicators. The magnitude of the effects, however, is context-dependent, revealing their potential complementarity. Land recovery showed highest benefits in terrestrial and freshwater systems in temperate zones and mostly acts at subnational scale. Contrastingly, climate action is more important in coastal and oceanic systems and in tropical regions, where benefits are larger on a regional to global scale. Our results show that land recovery and climate action will be imperative to reduce risks that would be imposed on nature by business-as-usual trends otherwise. We conclude that a better evaluation of which contexts are best suited for certain actions is a first step towards securing nature and the ecosystem services necessary to guarantee human well-being and the fulfilment of the sustainability agenda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Adenle AA (2012) Failure to achieve 2010 biodiversity’s target in developing countries: how can conservation help? Biodivers Conserv 21:2435–2442. https://doi.org/10.1007/s10531-012-0325-z

    Article  Google Scholar 

  • Benayas JMR, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124. https://doi.org/10.1126/science.1172460

    Article  CAS  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. https://doi.org/10.1126/science.1155121

    Article  CAS  Google Scholar 

  • Bustamante MMC, Silva JS, Scariot A, Sampaio AB, Mascia DL, et al. (2019) Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig Adapt Strateg Glob Chang 24:1249–1270. https://doi.org/10.1007/s11027-018-9837-5

  • Byrd KB, Flint LE, Alvarez P, Casey CF, Sleeter BM et al (2015) Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply. Landsc Ecol 30:729–750. https://doi.org/10.1007/s10980-015-0159-7

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148

    Article  CAS  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM et al (2000) Consequences of changing biodiversity. Nature 405:234–242. https://doi.org/10.1093/asj/sjx227

    Article  CAS  Google Scholar 

  • Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Chang 19:306–315. https://doi.org/10.1016/j.gloenvcha.2008.09.007

    Article  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460. https://doi.org/10.1126/science.1155365

    Article  CAS  Google Scholar 

  • Chiabai A, Quiroga S, Martinez-Juarez P, Higgins S, Taylor T (2018) The nexus between climate change, ecosystem services and human health: towards a conceptual framework. Sci Total Environ 635:1191–1204

    Article  CAS  Google Scholar 

  • Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV et al (2016) A global meta-analysis on the ecological drivers of forest restoration success. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms11666

    Article  CAS  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672. https://doi.org/10.1073/pnas.0709472105

    Article  Google Scholar 

  • Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:1300–1305. https://doi.org/10.1371/journal.pbio.0040277

    Article  CAS  Google Scholar 

  • Díaz S, Pascual U, Stenseke M, Martin-Lopez B, Watson RT et al (2018) Assessing nature’s contributions to people. Science 359:270–272. https://doi.org/10.1126/science.aap8826

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706. https://doi.org/10.1038/nature09407

    Article  CAS  Google Scholar 

  • Dobson A, Lodge D, Alder J, Cumming GS, Keymer J, McGlade J, Mooney H, Rusak JA, Sala O, Wolters V, Wall D, Winfree R, Xenopoulos MA (2006) Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87:1915–1924. https://doi.org/10.1890/0012-9658(2006)87[1915:HLTCAT]2.0.CO;2

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142. https://doi.org/10.1017/S1464793105006949

    Article  Google Scholar 

  • Feeley KJ, Stroud JT, Perez TM (2017) Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers Distrib 23:231–234

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G et al (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  CAS  Google Scholar 

  • Guerry AD, Polasky S, Lubchenco J, Chaplin-Kramer R, Daily GC, Griffin R, Ruckelshaus M, Bateman IJ, Duraiappah A, Elmqvist T, Feldman MW, Folke C, Hoekstra J, Kareiva PM, Keeler BL, Li S, McKenzie E, Ouyang Z, Reyers B et al (2015) Natural capital and ecosystem services informing decisions: from promise to practice. Proc Natl Acad Sci U S A 112:7348–7355

    Article  CAS  Google Scholar 

  • Haines-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli D, Frid C (eds) Ecosystem ecology: a new synthesis. Cambridge University Press, Cambridge, pp 110–139. https://doi.org/10.1017/cbo9780511750458.007

    Chapter  Google Scholar 

  • Hannah L, Roehrdanz PR, Marquet PA, Enquist BJ, Midgley G et al (2020) 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43:1–11. https://doi.org/10.1111/ecog.05166

    Article  Google Scholar 

  • Harrison PA, Berry PM, Simpson G, Haslett JR, Blicharska M et al (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Serv 9:191–203. https://doi.org/10.1016/j.ecoser.2014.05.006

    Article  Google Scholar 

  • Harrison PA, Harmáčková ZV, Karabulut AA, Brotons L, Cantele M, Claudet J, Dunford RW, Guisan A, Holman IP, Jacobs S, Kok K, Lobanova A, Morán-Ordóñez A, Pedde S, Rixen C, Santos-Martín F, Schlaepfer MA, Solidoro C, Sonrel A, Hauck J (2019) Synthesizing plausible futures for biodiversity and ecosystem services in Europe and Central Asia using scenario archetypes. Ecol Soc 24(2):27. https://doi.org/10.5751/ES-10818-240227

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. https://doi.org/10.1038/nature11118

    Article  CAS  Google Scholar 

  • IPBES (2018) Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Scholes R, Montanarella L, Brainich A, Barger N, ten Brink B, Cantele M, Erasmus B, Fisher J, Gardner T, Holland TG, Kohler F, Kotiaho JS, Von Maltitz G, Nangendo G, Pandit R, Parrotta J, Potts MD, Prince S, Sankaran M and Willemen L. (eds.). IPBES secretariat, Bonn. 44 pages.

  • IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Roy Chowdhury R, Shin YJ, Visseren-Hamakers IJ, Willis KJ, and Zayas CN (eds.). IPBES secretariat, Bonn. 56 pages.

  • IPCC (2014) Summary for policymakers. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland Cambridge, 1–32. https://doi.org/10.1017/CBO9781107415324

  • IPCC (2018) Summary for policymakers. In: Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, and Waterfield T (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp.

  • IPCC (2019) Summary for policymakers. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J, (eds.)].

  • Jackson HB, Fahrig L (2013) Habitat loss and fragmentation. Encycl Biodivers 4:50–58. https://doi.org/10.1016/B978-0-12-384719-5.00399-3

    Article  Google Scholar 

  • La Notte A, D’Amato D, Mäkinen H, Paracchini ML, Liquete C et al (2017) Ecosystem services classification: a systems ecology perspective of the cascade framework. Ecol Indic 74:392–402. https://doi.org/10.1016/j.ecolind.2016.11.030

    Article  Google Scholar 

  • Lenton TM, Rockström J, Gaffney O, Rahmstorf S, Richardson K et al (2019) Climate tipping points - too risky to bet against. Nature 575:592–595. https://doi.org/10.1038/d41586-019-03595-0

    Article  CAS  Google Scholar 

  • Lucini FA, Morone F, Tomassone MS, Makse HA (2020) Diversity increases the stability of ecosystems. PLoS One 15(4):e0228692. https://doi.org/10.1371/journal.pone.0228692

    Article  CAS  Google Scholar 

  • Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:19–26. https://doi.org/10.1016/j.tree.2011.08.006

    Article  Google Scholar 

  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, Jenkins R, Khan TM, Kiessling W, Krause C, Maharaj SS, Midgley GF, Price J, Talukdar G, Vale MM (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070

    Article  Google Scholar 

  • Maxwell SL, Evans T, Watson JEM, Morel A, Grantham H et al (2019) Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci Adv 5:1. https://doi.org/10.1126/sciadv.aax2546

    Article  CAS  Google Scholar 

  • MEA (2005) Millenium ecosystem assessment: ecosystems and human well-being.

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    Article  CAS  Google Scholar 

  • Naidoo R, Gerkey D, Hole D, Pfaff A, Ellis AM et al (2019) Evaluating the impacts of protected areas on human well-being across the developing world. Sci Adv 5:1–7. https://doi.org/10.1126/sciadv.aav3006

    Article  Google Scholar 

  • Newbold T (2018) Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc R Soc B Biol Sci 285:1–9. https://doi.org/10.1098/rspb.2018.0792

    Article  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, Palma A et al (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291. https://doi.org/10.1126/science.aaf2201

    Article  CAS  Google Scholar 

  • Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Chang 5:317–335. https://doi.org/10.1002/wcc.271

    Article  Google Scholar 

  • Petchey OL, Pontarp M, Massie TM, Kéfi S, Ozgul A et al (2015) The ecological forecast horizon, and examples of its uses and determinants. Ecol Lett 18:597–611. https://doi.org/10.1111/ele.12443

    Article  Google Scholar 

  • Peterson GD, Harmáčková ZV, Meacham M, Queiroz C, Jiménez-Aceituno A, Kuiper JJ, Malmborg K, Sitas N, Bennett EM (2018) Welcoming different perspectives in IPBES: “nature’s contributions to people” and “ecosystem services”. Ecol Soc 23:39. https://doi.org/10.5751/ES-10134-230139

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2020) nlme: linear and nonlinear mixed effects models. R package version 3.1-147, https://CRAN.R-project.org/package=nlme.

  • Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108–111. https://doi.org/10.1038/s41586-019-1132-4

    Article  CAS  Google Scholar 

  • Pires APF, Srivastava DS, Marino NAC, McDonald AM, Figueiredo-Barros MP et al (2018a) Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99(5):1203–1213. https://doi.org/10.1002/ecy.2202

    Article  Google Scholar 

  • Pires APF, Srivastava DS, Farjalla VF (2018b) Is biodiversity able to buffer ecosystems from climate change? What we know and what we don’t. BioScience 68:273–280. https://doi.org/10.1093/biosci/biy013

    Article  Google Scholar 

  • Pires APF, Amaral AG, Padgurschi MCG, Joly CA, Scarano FR (2018c) Biodiversity research still falls short of creating links with ecosystem services and human well-being in a global hotspot. Ecosyst Serv 34:68–73. https://doi.org/10.1016/j.ecoser.2018.10.001

    Article  Google Scholar 

  • Pires APF, Padgurschi MCG, Castro PD, Scarano FR, Strassburg B, Joly CA, Watson RT, Groot R (2020) Ecosystem services or nature’s contributions? Reasons behind different interpretations in Latin America. Ecosyst Serv 42:1–5. https://doi.org/10.1016/j.ecoser.2020.101070

    Article  Google Scholar 

  • Pörtner et al. (2021). IPBES-IPCC CO-sponsored workshop biodiversity and climate change. https://doi.org/10.5281/zenodo.4782538.IPBES

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

    Google Scholar 

  • Rounsevell MDA, Harfoot M, Harrison PA, Newbold T, Gregory RD, Mace GM (2020) A biodiversity target based on species extinctions. Science 368:1193–1195

    Article  CAS  Google Scholar 

  • Scarano FR (2017) Ecosystem-based adaptation to climate change: concept, scalability and a role for conservation science. Perspect Ecol Conserv 15:65–73. https://doi.org/10.1016/j.pecon.2017.05.003

    Article  Google Scholar 

  • Scheffer M, Barrett S, Carpenter SR, Folke C, Green AJ et al (2015) Creating a safe operating space for iconic ecosystems. Science 347:1317–1319. https://doi.org/10.1126/science.aaa3769

    Article  CAS  Google Scholar 

  • Schultz M, Tyrrell TD, Ebenhard T (2016) The 2030 Agenda and Ecosystems - a discussion paper on the links between the Aichi Biodiversity Targets and the Sustainable Development Goals. SwedBio at Stockholm Resilience Centre, Stockholm

    Google Scholar 

  • Steffen W, Persson A, Deutsch L, Zalasiewicz J, Williams M, Richardson K, Crumley C, Crutzen P, Folke C, Gordon L, Molina M, Ramanathan V, Rockström J, Scheffer M, Schellnhuber HJ, Svedin U (2011) The anthropocene: from global change to planetary stewardship. Ambio 40:739–761. https://doi.org/10.1007/s13280-011-0185-x

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, Vries W, Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:736–747. https://doi.org/10.1126/science.1259855

  • Taheri S, Naimi B, Rahbek C, Araújo MB (2021) Improvements in reports of species redistribution under climate change are required. Science. Advances 7:eabe1110

    Google Scholar 

  • TEEB Foundations (2010) The Economics of Ecosystems and Biodiversity (TEEB): ecological and economic foundations. Earthscan, London

    Google Scholar 

  • Titeux N, Henle K, Mihoub JB, Regos A, Geijzendorffer IR et al (2016) Biodiversity scenarios neglect future land-use changes. Glob Chang Biol 22:2505–2515. https://doi.org/10.1111/gcb.13272

    Article  Google Scholar 

  • Titeux N, Henle K, Mihoub JB, Regos A, Geijzendorffer IR et al (2017) Global scenarios for biodiversity need to better integrate climate and land use change. Divers Distrib 23:1231–1234. https://doi.org/10.1111/ddi.12624

    Article  Google Scholar 

  • Vale MM, Souza TV, Alves MAS, Crouzeilles R (2018) Planning protected areas network that are relevant today and under future climate change is possible: the case of Atlantic Forest endemic birds. PeerJ 6:e4689. https://doi.org/10.7717/peerj.4689

    Article  Google Scholar 

  • Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73. https://doi.org/10.1038/nature13947

    Article  CAS  Google Scholar 

  • Winter M, Fiedler W, Hochachka WM, Koehncke A, Meiri S, de la Riva I (2016) Patterns and biases in climate change research on amphibians and reptiles: a systematic review. R Soc Open Sci 3:160158

    Article  Google Scholar 

  • Wood SLR, Jones SK, Johnson JA, Brauman KA, Chaplin-Kramer R, Fremier A, Girvetz E, Gordon LJ, Kappel CV, Mandle L, Mulligan M, O’Farrell P, Smith WK, Willemen L, Zhangm W, DeClerck FA(2018) Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst Serv 29:70–82. https://doi.org/10.1016/j.ecoser.2017.10.010

Download references

Acknowledgements

SM received a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Grant no. 001) and by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, Grant Doutorado Nota 10). MMV received fellowships from the National Council for Scientific and Technological Development (CNPq, Grant ID: 304309/2018-4). This paper was developed in the context of the Brazilian Research Network on Climate Change, supported by FINEP (Grant ID: 01.13.0353-00) and the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation, supported by CNPq (Grant ID: 465610/2014-5) and FAPEG (Grant ID: 201810267000023). APFP thanks for the support of the project APQ1-2019 from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, Grant no. 249778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Manes.

Additional information

Communicated by Jasper Van Vliet

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18 kb)

ESM 2

(XLSX 24665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manes, S., Vale, M.M. & Pires, A.P.F. The effectiveness of climate action and land recovery across ecosystems, climatic zones and scales. Reg Environ Change 22, 5 (2022). https://doi.org/10.1007/s10113-021-01866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-021-01866-z

Keywords

Navigation