Skip to main content

Hydrologic response to large-scale land use and cover changes in the Upper Paraná River Basin between 1985 and 2015

Abstract

The Upper Paraná River Basin (UPRB) has undergone remarkable land use and cover changes (LUCC) in recent decades. This paper analyses the hydrologic response to LUCC in the UPRB between 1985 and 2015, using the Soil and Water Assessment Tool (SWAT) model. The impacts of LUCC were examined for annual, wet, and dry season (both during calibrated and validated periods) between 1984 and 2015. The most substantial LUCC were the extensive reduction of the cerrado and the expansion of agriculture areas. The simulations demonstrated that the LUCC caused important changes in basin hydrology. For instance, an increase (decrease) of surface runoff in the wet (dry) season at most UPRB subbasins was observed. In addition, the simulation results revealed a reduction in actual evapotranspiration and an increase in soil moisture in the annual and wet season. Consequently, most of the major rivers of the basin presented an increase (decrease) in their discharge in the wet (dry) period. The major changes in the hydrologic components were observed in the central-western and southern parts of the UPRB. At the river mouth of the UPRB, the LUCC led to an increase in long-term mean discharge values of 4.2% and 1.1% in the annual and wet season and a decrease of about 2.2% in the dry period. This study provides a large-scale modeling and valuable information that could be used to improve planning and sustainable management of future water resources within the basin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbaspour KC (2015) SWAT-CUP: SWAT Calibration and Uncertainty Programs - A User Manual. Swiss federal institute of aquatic science and technology. Eawag, Dubendorf, p 103.

  2. Abbaspour KC, Johnson CA, van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zo J 3:1340–1352. https://doi.org/10.2136/vzj2004.1340

    Article  Google Scholar 

  3. Abou Rafee SA, Freitas ED, Martins JA, Martins LD, Domingues LM et al (2020) Spatial trends of extreme precipitation events in the Paraná River Basin. J Appl Meteorol Climatol 59:443–454. https://doi.org/10.1175/JAMC-D-19-0181.1

    Article  Google Scholar 

  4. Abou Rafee SA, Uvo CB, Martins JA, Domingues LM, Rudke AP et al (2019) Large-scale hydrological modelling of the Upper Paraná River Basin. Water (Switzerland) 11:882. https://doi.org/10.3390/w11050882

    Article  Google Scholar 

  5. Adami M, Rudorff BFT, Freitas RM, Aguiar DA, Sugawara LM et al (2012) Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 4(4):574–585. https://doi.org/10.3390/su4040574

    Article  Google Scholar 

  6. Alemayehu T, Van Griensven A, Woldegiorgis BT, Bauwens W (2017) An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol Earth Syst Sci 21(9):4449–4467. https://doi.org/10.5194/hess-21-4449-2017

    Article  Google Scholar 

  7. ANEEL (2020). BIG ­ Banco de Informações de Geração - Capacidade de Geração do Brasil - Usinas hidrelétricas, BIG. Available online: https://bit.ly/2IGf4Q0 (accessed December 2020).

  8. Antico A, Torres ME, Diaz HF (2016) Contributions of different time scales to extreme Paraná floods. Clim Dyn 46:3785–3792. https://doi.org/10.1007/s00382-015-2804-x

    Article  Google Scholar 

  9. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modelling and assessment part I : Model development. J Am Water Resour Assoc 34(1):73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    CAS  Article  Google Scholar 

  10. Baer W, Birch MH (1984) Expansion of the economic frontier: Paraguayan growth in the 1970s. World Dev 12(8):783–798. https://doi.org/10.1016/0305-750X(84)90074-3

    Article  Google Scholar 

  11. Baker TJ, Miller SN (2013) Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J Hydrol 486:100–111. https://doi.org/10.1016/j.jhydrol.2013.01.041

    Article  Google Scholar 

  12. Boserup E (2014) The conditions of agricultural growth: The economics of agrarian change under population pressure. London, p 124. https://doi.org/10.4324/9781315070360

  13. Bucci SJ, Scholz FG, Goldstein G, Hoffmann WA, Meinzer FC et al (2008) Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agric for Meteorol 148(6-7):839–849. https://doi.org/10.1016/j.agrformet.2007.11.013

    Article  Google Scholar 

  14. Cabral OMR, Rocha HR, Gash JH, Ligo MA, Tatsch JD et al (2012) Water use in a sugarcane plantation. GCB Bioenergy 4(5):555–565. https://doi.org/10.1111/j.1757-1707.2011.01155.x

  15. Camilloni IA, Barros VR (2003) Extreme discharge events in the Paraná River and their climate forcing. J Hydrol 278:94–106. https://doi.org/10.1016/S0022-1694(03)00133-1

    Article  Google Scholar 

  16. Cao W, Bowden WB, Davie T, Fenemor A (2009) Modelling impacts of land cover change on critical water resources in the Motueka River Catchment. New Zealand. Water Resour Manag 23(1):137–151. https://doi.org/10.1007/s11269-008-9268-2

    Article  Google Scholar 

  17. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. https://doi.org/10.1175/1520-0442(2004)017%3c0088:TSACZI%3e2.0.CO;2

  18. Carvalho LMV, Jones C, Silva AE, Liebmann B, Silva Dias PL (2011) The South American Monsoon System and the 1970s climate transition. Int J Climatol 31:1248–1256. https://doi.org/10.1002/joc.2147

    Article  Google Scholar 

  19. Chotpantarat S, Boonkaewwan S (2018) Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrol Sci J 63(9):1386–1407. https://doi.org/10.1080/02626667.2018.1506128

    CAS  Article  Google Scholar 

  20. Costa-Cabral MC, Richey JE, Goteti G, Lettenmaier DP, Feldkötter C et al (2008) Landscape structure and use, climate, and water movement in the Mekong River basin. Hydrol Process 22(12):1731–1746. https://doi.org/10.1002/hyp.6740

    Article  Google Scholar 

  21. Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River. Southeastern Amazonia. J Hydrol 283(1–4):206–217. https://doi.org/10.1016/S0022-1694(03)00267-1

    Article  Google Scholar 

  22. Cruz Ruggiero PG, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest. Southeastern Brazil. Plant Ecol 160(1):1–6. https://doi.org/10.1023/A:1015819219386

    Article  Google Scholar 

  23. Da Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML et al (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in brazil. J Geophys Res Biogeosciences 114:G00B12. https://doi.org/10.1029/2007JG000640

  24. De Jesus EM, Da Rocha RP, Reboita MS, Llopart M, Dutra LM, Remedio AR et al (2016) Contribution of cold fronts to seasonal rainfall in simulations over the southern la Plata Basin. Clim Res 68(2-3):243–55. https://doi.org/10.3354/cr01358

    Article  Google Scholar 

  25. De Roo A, Odijk M, Schmuck G, Koster E, Lucieer A (2001) Assessing the effects of land use changes on floods in the meuse and oder catchment. Phys Chem Earth, Part B Hydrol Ocean Atmos 26:593–599. https://doi.org/10.1016/S1464-1909(01)00054-5

    Article  Google Scholar 

  26. DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18(11):2183–2186. https://doi.org/10.1002/hyp.5584

    Article  Google Scholar 

  27. Dos Santos HG, Jacomine PK, Dos Anjos LH, De Oliveira VA, Lumbreras JF et al (2018) Sistema brasileiro de classificação de solos, 5th edn. Embrapa, Brasilia

  28. Dos Santos V, Laurent F, Abe C, Messner F (2018) Hydrologic response to land use change in a large basin in eastern Amazon. Water (switzerland) 10:429. https://doi.org/10.3390/w10040429

    Article  Google Scholar 

  29. Doyle ME, Barros VR (2011) Attribution of the river flow growth in the Plata Basin. Int J Climatol 31:2234–2248. https://doi.org/10.1002/joc.2228

    Article  Google Scholar 

  30. Durkee JD, Mote TL (2010) A climatology of warm-season mesoscale convective complexes in subtropical South America. Int J Climatol 30(3):418–431. https://doi.org/10.1002/joc.1893

    Article  Google Scholar 

  31. Ferrant S, Oehler F, Durand P, Ruiz L, Salmon-Monviola, et al (2011) Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. J Hydrol 406(1-2):1–5. https://doi.org/10.1016/j.jhydrol.2011.05.026

    CAS  Article  Google Scholar 

  32. Ficklin DL, Luo Y, Luedeling E, Zhang M (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J Hydrol 74(1-2):16–29. https://doi.org/10.1016/j.jhydrol.2009.05.016

    CAS  Article  Google Scholar 

  33. Francesconi W, Srinivasan R, Pérez-Miñana E, Willcock SP, Quintero M et al (2016) Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J Hydrol 535:625–636. https://doi.org/10.1016/j.jhydrol.2016.01.034

    Article  Google Scholar 

  34. Fu B, Wang J, Chen L, Qiu Y (2003) The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA 54:197–213. https://doi.org/10.1016/S0341-8162(03)00065-1

    Article  Google Scholar 

  35. Ghaffari G, Keesstra S, Ghodousi J, Ahmadi H (2010) SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrol Process 24:892–903. https://doi.org/10.1002/hyp.7530

    Article  Google Scholar 

  36. Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J et al (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: The Brazilian experience. South For 70:105–118. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.6.534

  37. Grimm AM, Pal JS, Giorgi F (2007) Connection between spring conditions and peak summer monsoon rainfall in South America: Role of soil moisture, surface temperature, and topography in eastern Brazil. J Clim 20:5929–5945. https://doi.org/10.1175/2007JCLI1684.1

    Article  Google Scholar 

  38. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  39. Hernandes TAD, Scarpare FV, Seabra JEA (2018) Assessment of the recent land use change dynamics related to sugarcane expansion and the associated effects on water resources availability. J Clean Prod 197:1328–1341. https://doi.org/10.1016/j.jclepro.2018.06.297

    Article  Google Scholar 

  40. Hoffmann WA, Da Silva ER, Machado GC, Bucci SJ, Scholz FG et al (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145(2):306–315. https://doi.org/10.1007/s00442-005-0129-x

    Article  Google Scholar 

  41. Huang M, Zhang L, Gallichand J (2003) Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol Process 18:1885–1898. https://doi.org/10.1002/hyp.1281

    Article  Google Scholar 

  42. IBGE (2019). Brazilian Institute of Geography and Statistics - Population Available online: http://www.ibge.gov.br/apps/populacao/projecao/ (accessed November 2019).

  43. Kalantari Z, Lyon SW, Folkeson L, French HK, Stolte J et al (2014) Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci Total Environ 466:741–754. https://doi.org/10.1016/j.scitotenv.2013.07.047

    CAS  Article  Google Scholar 

  44. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A et al (2001) The causes of land-use and land-cover change: Moving beyond the myths. Glob Environ Chang 11(4):261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  45. Lamparter GJ, Nobrega RLB, Kovacs K, Amorim RS, Gerold G (2018) Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Reg Environ Chang 1–13. https://doi.org/10.1007/s10113-016-1015-2

  46. Leta OT, van Griensven A, Bauwens W (2017) Effect of single and multisite calibration techniques on the parameter estimation, performance, and output of a SWAT model of a spatially heterogeneous catchment. J Hydrol Eng 22(3):05016036. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001471

  47. Li Z, Deng X, Wu F, Hasan SS (2015) Scenario analysis for water resources in response to land use change in the middle and upper reaches of the heihe river Basin. Sustain 7:3086–3108. https://doi.org/10.3390/su7033086

    Article  Google Scholar 

  48. Lin B, Chen X, Yao H, Chen Y, Liu M et al (2015) Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol Indic 58:55–63. https://doi.org/10.1016/j.ecolind.2015.05.031

    Article  Google Scholar 

  49. Manoli G, Ivanov VY, Fatichi S (2018) Dry-season greening and water stress in Amazonia: The role of modeling leaf phenology. J Geophys Res Biogeosciences 123:1909–1926. https://doi.org/10.1029/2017JG004282

    Article  Google Scholar 

  50. MMA (2012) Monitoramento do desmatamento nos biomas brasileiros por satélite: monitoramento do bioma Mata Atlântica - 2008 a 2009. Ministério do Meio Ambient Brasília, DF. Available at https://antigo.mma.gov.br/projeto-de-monitoramento-do-desmatamento-nos-biomas-brasileiros-por-satélite-pmdbbs.html

  51. MMA (2011) Monitoramento do desmatamento nos biomas brasileiros por satélite: monitoramento do bioma Cerrado - 2009 a 2010. Ministério do Meio Ambient Brasília, DF. Available at https://antigo.mma.gov.br/projeto-de-monitoramento-do-desmatamento-nos-biomas-brasileiros-por-satelite-pmdbbs.html

  52. Monteith JL (1965) Evaporation and envrionment. In: Fogg BD (ed) The state and movement of water in living organisms, Symposium of the Society of Experimental Biology, vol 19. Cambridge University Press, Cambridge, UK, pp 205–234

    Google Scholar 

  53. Moriasi DNJG, Arnold MW, Van Liew RL, Binger RD, Harmel and TV (2007) Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans ASABE. 55(4), 1549–1559. https://doi.org/10.13031/2013.23153

  54. Morton DC, Nagol J, Carabajal CC, Rosette J, Palace M et al (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506(7487):221–224. https://doi.org/10.1038/nature13006

    CAS  Article  Google Scholar 

  55. Mueller C, Mueller B (2016) The evolution of agriculture and land reform in Brazil, 1960–2006. Conference in honor of Werner Baer, University of Illinois. December 1–2, 2006

  56. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - A discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  57. Negrón Juárez RI, da Rocha HR, e Figueira AMS, Goulden ML, Miller SD (2009) An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs. Agric For Meteorol. https://doi.org/10.1016/j.agrformet.2008.11.012

  58. Neitsch S, Arnold J, Kiniry J, Williams J (2011) Soil & Water Assessment Tool: Theoretical Documentation Version 2009. Retrieved from http://oaktrust.library.tamu.edu/handle/1969.1/128050

  59. Nepstad DC, De Carvalho CR, Davidson EA, Jipp PH, Lefebvre P et al (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507):666–669. https://doi.org/10.1038/372666a0

    CAS  Article  Google Scholar 

  60. Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA et al (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19(4):574–581. https://doi.org/10.1111/j.1365-2435.2005.01003.x

    Article  Google Scholar 

  61. Pokhrel Y, Burbano M, Roush J, Kang H, Sridhar V et al (2018) A review of the integrated effects of changing climate, land use, and dams on Mekong river hydrology. Water (Switzerland) 10(3):266. https://doi.org/10.3390/w10030266

    Article  Google Scholar 

  62. Rajib A, Merwade V (2017) Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st century. Hydrol Process 31:3645–3661. https://doi.org/10.1002/hyp.11282

    Article  Google Scholar 

  63. Rudke AP (2018) Dinâmica da cobertura do solo para a bacia hidrográfica do alto rio Paraná. Master´s Thesis, Federal University of Tecnology Parana, Londrina, Brazil, p. 110. http://repositorio.utfpr.edu.br/jspui/handle/1/3328

  64. Rudke AP, Fujita T, de Almeida DS, Eiras MM, Xavier ACF et al (2019) Land cover data of Upper Parana River Basin, South America, at high spatial resolution. Int J Appl Earth Obs Geoinf 83:101926. https://doi.org/10.1016/j.jag.2019.101926

  65. Rudorff BFT, de Aguiar DA, da Silva WF, Sugawara LM, Adami M et al (2010) Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remote Sens 2(4):1057–1076. https://doi.org/10.3390/rs2041057

    Article  Google Scholar 

  66. Saha S, Moorthi S, Pan HL, Wu X, Wang J et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  67. Saha S, Moorthi S, Wu X, Wang J, Nadiga S et al (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  68. Saleska SR, Wu J, Guan K, Araujo AC, Huete A et al (2016) Dry-season greening of Amazon forests. Nature 531(7594):E4–E5. https://doi.org/10.1038/nature16457

    CAS  Article  Google Scholar 

  69. Soil Conservation Service Engineering Division (1972) Section 4: Hydrology. In: National Engineering Handbook. Washington (DC):US Department of Agriculture.

  70. Strauch M, Volk M (2013) SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol Modell 269:98–112. https://doi.org/10.1016/j.ecolmodel.2013.08.013

    Article  Google Scholar 

  71. Thiemig V, Rojas R, Zambrano-Bigiarini M, De Roo A (2013) Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J Hydrol 499:324–338. https://doi.org/10.1016/j.jhydrol.2013.07.012

    Article  Google Scholar 

  72. Toloi RC, Freitas Junior M, Reis JGM dos et al (2016) Droughts in the Tietê-Paraná waterway: impacts on the direct, indirect and hidden costs in the transportation of soybean. Indep J Manag Prod 7(2):431–444. https://doi.org/10.14807/ijmp.v7i2.418

  73. Tucci CE (2002) Impactos da variabilidade climática e do uso do solo nos recursos hídricos. Câmara Temática sobre Recur Hídricos. Câmara Temática de Recursos Hídricos, Agência Nacional de Águas (ANA), Brasil, p. 150

  74. Van Griensven A, Ndomba P, Yalew S, Kilonzo F (2012) Critical review of SWAT applications in the upper Nile basin countries. Hydrol Earth Syst Sci 16(9):3371–3381. https://doi.org/10.5194/hess-16-3371-2012

  75. Velasco I, Fritsch JM (1987) Mesoscale convective complexes in the Americas. J Geophys Res 92:9591–9613. https://doi.org/10.1029/JD092iD08p09591

    Article  Google Scholar 

  76. Viola MR, Mello CR, Beskow S, Norton LD (2014) Impacts of land-use changes on the hydrology of the Grande River Basin headwaters, Southeastern Brazil. Water Resour Manag (13):4537–4550. https://doi.org/10.1007/s11269-014-0749-1

  77. Wagner PD, Kumar S, Fiener P, Schneider K (2011) Technical Note: Hydrological Modeling with SWAT in a Monsoon-Driven Environment: Experience from the Western Ghats, India. Trans ASABE. 54 (5), 1783–1790 https://doi.org/10.13031/2013.39846

  78. Wang G, Yang H, Wang L, Xu Z, Xue B (2014) Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrol Process 28:1032–1042. https://doi.org/10.1002/hyp.9645

    Article  Google Scholar 

  79. Wu K, Johnston CA (2007) Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model. J Hydrol 337(1-2):187–199. https://doi.org/10.1016/j.jhydrol.2007.01.030

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil” (CAPES)–Finance Code 001 (Process # 88887.115875/2015-01) and “Fundação de Amparo à Pesquisa do Estado de São Paulo” FAPESP (process #2015/03804-9). The authors would like to gratefully acknowledge “Agência Nacional de Águas” (ANA) by providing the precipitation and discharge data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sameh Adib Abou Rafee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Arpita Mondal

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6707 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abou Rafee, S.A., de Freitas, E.D., Martins, J.A. et al. Hydrologic response to large-scale land use and cover changes in the Upper Paraná River Basin between 1985 and 2015. Reg Environ Change 21, 112 (2021). https://doi.org/10.1007/s10113-021-01827-6

Download citation

Keywords

  • Large-scale modeling
  • Surface runoff
  • Actual evapotranspiration
  • Soil moisture
  • Discharge
  • SWAT model