Skip to main content

Nitrogen-fixing trees increase organic carbon sequestration in forest and agroforestry ecosystems in the Congo basin

Abstract

Experimental evidence on the effects of introducing nitrogen-fixing trees (NFTs) in forests and agroforestry systems on soil properties, crop yields, carbon (C) sequestration, and other ecosystem services in the Congo basin is scarce. A systematic literature review was conducted to study the effects of integrating NFTs in forests and agroforestry systems on tree biomass carbon stocks, soil properties (i.e., soil organic C (SOC), N, P, CEC, C:N ratio), crop yields and other ecosystem services; and examine their contribution to the objectives of 4 per 1000 Initiative. Electronic search engines (Google, Google Scholar) were searched focusing on Acacia auriculiformis–based agroforestry in the Democratic Republic of Congo (DRC) and Acacia mangium–based forestry in Republic of the Congo (RoC). This study suggests that integrating NFTs in both agricultural and forest landscapes in the Congo basin (DRC and RoC) improves the soil health through C sequestration and nutrient restoration relative to tropical savannas. This practice also generates other ecosystem services (i.e., pulp and fuelwood energy supply, poles for electricity network, food availability, land restoration). Integrating NFTs in forest and agroforestry ecosystems could therefore improve soil health and food security, mitigate climate change, and hence promote the objectives of 4 per 1000 Initiative.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27. https://doi.org/10.1016/S0167-8809(03)00138-5

    CAS  Article  Google Scholar 

  2. Asaah EK, Tchoundjeu Z, Leakey RRB, Takousting B, Njong J et al. (2011) Trees, agroforestry and multifunctional agriculture in Cameroon. Int J Agric Sustain 9(1):110–119. https://doi.org/10.3763/ijas.2010.0553

    Article  Google Scholar 

  3. Baah-Acheamfour M, Carlyle C, Lim S, Bork EW, Chang S (2016) Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Sci Total Environ 571:1115–1127. https://doi.org/10.1016/j.scitotenv.2016.07.106

    CAS  Article  Google Scholar 

  4. Bauters M, Ampoorter E, Huygens D, Kearsley E, De Haulleville T et al. (2015) Functional identity explains carbon sequestration in a 77-year-old experimental tropical plantation. Ecosphere 6(10):198. https://doi.org/10.1890/ES15-00342.1

    Article  Google Scholar 

  5. Bernhard-Reversat F (1993) Dynamics of litter and organic matter at the soil-litter interface of fast-growing tree plantations on sandy ferrallitic soils (Congo). Acta Oecol 14(2):179–195

    Google Scholar 

  6. Bini D, dos Santos CA, Bouillet J-P, de Morais Goncalves JL, Cardosoa EJBN (2013) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66. https://doi.org/10.1016/j.apsoil.2012.09.012

    Article  Google Scholar 

  7. Bini D, dos Santos CA, da Silva MCP, Bonfim JA, Cardoso EJBN (2018) Intercropping Acacia mangium stimulates AMF colonization and soil. Sci Agric 75(2):102–110. https://doi.org/10.1590/1678-992X-2016-0337

    CAS  Article  Google Scholar 

  8. Bini D, Figueiredo AF, da Silva MCP, de Figueiredo Vasconcellos RL, Cardoso EJBN (2012) Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium. Rev Bras Cienc Solo 37:76–85. https://doi.org/10.1590/S0100-06832013000100008

    Article  Google Scholar 

  9. Binkley, D (1992) Mixtures of N2-fixing and non-N2-fixing tree species. In: Cannell MGR, Malcom DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Blackwell Scientific Publications, Oxford. http://www.agris.fao.org/agris-search/search.do?recordID=XF2016029053

  10. Binkley D (2005) How nitrogen-fixing trees change soil carbon. In: Binkley, D., Menyailo, O. (Eds.). Tree species effects on soils: implications for global change. NATO Science Series, Kluwer Academic Publishers, Dordrecht. pp. 155–164. https://doi.org/10.1007/1-4020-3447-4

  11. Bisiaux F, Peltier R, Muliele JC (2009) Plantations industrielles et agroforesterie au service des populations des plateaux Batéké, Mampu, en République démocratique du Congo. Bois For Trop 301(3):21–32. https://doi.org/10.19182/bft2009.301.a20404

    Article  Google Scholar 

  12. Bouillet J-P, Laclau JP, Gonçalves JLM, Voigtlaender M, Gava JL et al. (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. For Ecol Manage 301:89–101. https://doi.org/10.1016/j.foreco.2012.09.019

    Article  Google Scholar 

  13. Chaer GM, Resende AS, Campello EFC, de Faria SM, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31:139–149. https://doi.org/10.1093/treephys/tpq116

    Article  Google Scholar 

  14. Chen D, Zhang C, Wu J, Zhou L, Lin Y, Fu S (2011) Subtropical plantations are large carbon sinks: evidence from two monoculture plantations in South China. Agric for Meteorol 151:1214–1225. https://doi.org/10.1016/j.agrformet.2011.04.011

    Article  Google Scholar 

  15. Corbeels M, McMurtrie RE, Pepper DA, Mendham DS, Grove TS, O’Connell AM (2005) Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: a modelling analysis. For Ecol Manage 217:1–18. https://doi.org/10.1016/j.foreco.2005.05.057

    Article  Google Scholar 

  16. Delwaulle JC, Garbaye J, Laplace Y (1981) Ligniculture en milieu tropical: Les reboisements en eucalyptus hybrides de la savane côtière Congolaise. Rev For Francaise 3:248–255. https://doi.org/10.4267/2042/21511

    Article  Google Scholar 

  17. Derrien D, Plain C, Courty PE, Gelhaye L, Moerdijk T, Thomas F, Versini A, Zeller B, Koutika L-S, Boschker E, Epron D (2014) Does the addition of labile substrate destabilise old soil organic matter? Soil Biol Biochem 76:149–160. https://doi.org/10.1016/j.soilbio.2014.04.030

    CAS  Article  Google Scholar 

  18. Dubiez E, Freycon V, Marien JM, Peltier R, Harmand JM (2019) Long term impact of Acacia auriculiformis woodlots growing in rotation with cassava and maize on the carbon and nutrient contents of savannah sandy soils in the humid tropics (Democratic Republic of Congo). Agrofor Syst 93:1167–1178. https://doi.org/10.1007/s10457-018-0222-x

    Article  Google Scholar 

  19. Epron D, Nouvellon Y, Mareschal L, Moreira RM, Koutika L-S, Geneste B, Delgado-Rojas JS, Laclau JP, Sola G, Gonçalves JLM, Bouillet JP (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: two case-studies in contrasting tropical environments. For Ecol Manage 301:102–111. https://doi.org/10.1016/j.foreco.2012.10.034

    Article  Google Scholar 

  20. FAO, ITTO (2011) The state of forests in Amazon Basin, Congo Basin and Southeast Asia. Summit of the three rainforest basins, Republic of the Congo, Brazzaville 31 May-3 June 2011, 80pp. http://www.pfbc-cbfp.org/amazon-congo-asia.html

  21. FAO, Unep (2020) The State of the World’s Forests 2020 Forests, biodiversity and people Rome. https://doi.org/10.4060/ca8642en

  22. FAO (2015) Agroforestry definition. http://www.fao.org/forestry/agroforestry/80338/en/. Accessed 13 Dec 2020

  23. Fornara D, Banin L, Crawley M (2013) Multi-nutrient versus nitrogen-only effects on carbon sequestration in grassland soils. Glob Change Biol 19:3848–3857. https://doi.org/10.1111/gcb.12323

    Article  Google Scholar 

  24. Forrester DI, Pares A, O’Hara C, Khanna PK, Bauhus J (2013) Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems 16:123–132. https://doi.org/10.1007/s10021-012-9600-9

    CAS  Article  Google Scholar 

  25. Global Forest Resources Assessment 2000 (FRA 2000) Forest plantation. http://www.fao.org/3/y1997e/y1997e08.htm. Accessed 12 Nov 2020

  26. Franco AA, de Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903. https://doi.org/10.1016/S0038-0717(96)00229-5

    CAS  Article  Google Scholar 

  27. Gutlein A, Gerschlauer F, Kikot I, Kiese R (2018) Impacts of climate and land use on N2O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania. Glob Chang Biol 24(3):1239–1255. https://doi.org/10.1111/gcb.13944

  28. IPCC (2000) Land-use, land-use change and forestry. Special report of the intergovernmental panel on climate change. Cambridge University Press, UK, p 375. www.ipcc.ch/report/land-use-land-use-change-and-forestry. Accessed 12 Nov 2020

  29. Jesson J, Matheson L, Lacey FM (2011) Doing your literature review: traditional and systematic techniques. Sage Publications Ltd, London, UK. https://doi.org/10.1080/09500790.2011.581509

  30. Kaonga ML (2005) Understanding carbon dynamics in agroforestry systems in eastern Zambia. Ph.D. Dissertation. Fitzwilliam College, University of Cambridge, UK, p 431

  31. Kaonga ML, Coleman K (2008) Modelling soil organic carbon turnover in improved fallows in eastern Zambia using RothC-26.3 Model. For Ecol Manage 256(5):1160–1166. https://doi.org/10.1016/j.foreco.2008.06.017

    Article  Google Scholar 

  32. Kasongo RK, Van Ranst E, Verdoodt A, Kanyankagote P, Baert G (2009) Impact of Acacia auriculiformis on the chemical fertility of sandy soils on the Batéké plateau, D.R. Congo Soil Use Manage 25:21–27. https://doi.org/10.1111/j.1475-2743.2008.00188.x

    Article  Google Scholar 

  33. Kimaro AA, VicR T, Mugasha AG, Chamshama SAO, Kimaro DA (2007) Nutrient use efficiency and biomass production of tree species for rotational woodlot systems in semi-arid Morogoro, Tanzania. Agrofor Syst 71:175–184. https://doi.org/10.1007/s10457-007-9061-x

    Article  Google Scholar 

  34. Kooke G X, Foumilayo RK, Mandus A, Jossou JM, Toko Imorou (2019) Estimation du stock de carbone organique dans les plantations d’Acacia auriculiformis. A. Cunn. ex Benth. des forêts classées de Pahou et de Ouèdo au Sud du Bénin, Int J Biol Chem Sci 13(1): 277–293. https://doi.org/10.4314/ijbcs.v13i1.23

  35. Kotir JH (2011) Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environ Dev Sustain 13:587–605. http://hdl.handle.net/https://doi.org/10.1007/s10668-010-9278-0

  36. Kou-Giesbrecht S, Menge D (2019) Nitrogen-fixing trees could exacerbate climate change under elevated nitrogen deposition. Nat Commun 10:1493. https://doi.org/10.1038/s41467-019-09424-2

    CAS  Article  Google Scholar 

  37. Koutika L-S, Epron D, Bouillet JP, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:205–216. https://doi.org/10.1007/s11104-014-2047-3

    CAS  Article  Google Scholar 

  38. Koutika L-S, Mareschal L, Epron D (2016) Soil P availability under eucalypt and acacia on Ferralic Arenosols, republic of the Congo. Geoderma Reg 7:153–158. https://doi.org/10.1016/j.geodrs.2016.03.001

    Article  Google Scholar 

  39. Koutika L-S, Tchichelle SV, Mareschal L, Epron D (2017) Nitrogen dynamics in a nutrient-poor soil under mixed-species plantations of eucalypts and acacias. Soil Biol Biochem 108:84–90. https://doi.org/10.1016/j.soilbio.2017.01.023

    CAS  Article  Google Scholar 

  40. Koutika LS, Mareschal L (2017) Acacia and eucalypt change P, N and C concentrations in POM of Arenosols in the Congolese coastal plains. Geoderma Reg 11:37–43. https://doi.org/10.1016/j.geodrs.2017.07.009

  41. Koutika LS (2019) Afforesting tropical savannas with Acacia mangium and eucalyptus improves soil P availability in Arenosols of the Congolese coastal plains. Geoderma Reg e00207. https://doi.org/10.1016/j.geodrs.2019.e00207

  42. Koutika L-S, Richardson DM (2019) Acacia mangium Willd: benefits and threats associated with its increasing use around the world (Review). For Ecosyst 6(2):1–13. https://doi.org/10.1186/s40663-019-0159-1

    Article  Google Scholar 

  43. Koutika L-S, Cafiero L, Bevivino A, Merino A (2020a) Organic matter quality of forest floor as a driver of C and P dynamics in acacia and eucalypt plantations established on a Ferralic Arenosols. Congo For Ecosyst 7:20. https://doi.org/10.1186/s40663-020-00249-w

    Article  Google Scholar 

  44. Koutika L-S, Fiore A, Tabacchioni S, Aprea G, Pereira APA, Bevivino A (2020b) Influence of Acacia mangium on soil fertility and bacterial community in Eucalyptus Plantations in the Congolese Coastal Plains. Sustainability 12:8763. https://doi.org/10.3390/su12218763

    CAS  Article  Google Scholar 

  45. Koutika L-S (2021) Soil fertility improvement of nutrient-poor and sandy soils in the Congolese coastal plains. FAO & ITPS. 2021. Recarbonizing global soils: A technical manual of recommended management practices. Vol. 6: Forestry, wetlands, urban soils – Case studies. Rome, pp 4–13. https://doi.org/10.4060/cb6605en

  46. Kuyah S, Oborn I, Dahlin AS, Barrios E, Muthuri C (2016) Trees in agricultural landscapes enhance provision of ecosystem services in Sub-Saharan Africa. I J Biodivers Sci Ecosys Serv Manage 12(4):255–273. https://doi.org/10.1080/21513732.2016.1214178

    Article  Google Scholar 

  47. Laclau JP, Ranger J, Deleporte Ph, Nouvellon Y, Saint André L, Marlet S, Bouillet JP (2005) Nutrient cycling in a clonal stand of eucalyptus and an adjacent savanna ecosystem in Congo. 3. Input-output budget and consequences for the sustainability of the plantations. For Ecol Manage 210:375–391. https://doi.org/10.1016/j.foreco.2005.02.028

    Article  Google Scholar 

  48. Laclau JP, Ranger J, Gonçalves JLdeM, Maquère V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-André L, Bouillet JP, de Cassia Piccolo M, Deleporte P (2010). Biogeochemical cycles of nutrients in tropical eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manage 259:1771–1785. https://doi.org/10.1016/j.foreco.2009.06.010

  49. Lal R (2012) Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric Res 1(3):199–212. https://doi.org/10.1007/s40003-012-0031-9

    Article  Google Scholar 

  50. Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895. https://doi.org/10.3390/su7055875

    Article  Google Scholar 

  51. Lescuyer G, Karsenty A, Eba’a Atyi R (2009) A new tool for sustainable forest management in Central Africa: payments for environmental services. In: de Wasseige C, Devers D, de Marcken P, Eba’a Atyi R, Nasi R, Mayaux P (eds) The Forests of the Congo Basin: state of the Forest 2008. Publications Office of the European Union, Luxembourg, pp 131–143

  52. Lee KL, Ong KH, King PJH, Chubo JK, Su DSA (2015) Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turk J Agric for 39:154–161. https://doi.org/10.3906/tar-1404-20

    CAS  Article  Google Scholar 

  53. Lejolly J (2018) Modèle agroforestier pour le développement à Ibi/Plateau de Batéké, Université Libre de Bruxelles, Belgique p. 12. www.cairn.info/revue-mondes-en-developpement-2019-3-page-113.html. Accessed 27 Apr 2021

  54. Machado MR, Camara R, Sampaio PTB, Ferraz JBS, Pereira MG (2018) Silvicultural performance of five forest species in the central Brazilian Amazon. Acta Amazon 48:10–17. https://doi.org/10.1590/1809-4392201700602

    Article  Google Scholar 

  55. Marin-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob Change Biol 15:1584–1597. https://doi.org/10.1111/j.1365-2486.2008.01805.x4

    Article  Google Scholar 

  56. Mareschal L, Nzila JDD, Turpault MP, M’Bou AT, Mazoumbou JC, Bouillet JP, Ranger J, Laclau JP (2011) Mineralogical and physico-chemical properties of Ferralic Arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. Geoderma 162:159–170. https://doi.org/10.1016/j.geoderma.2011.01.017

    CAS  Article  Google Scholar 

  57. Matsubara K, Ohta S (2015) The effects of tannins derived from Acacia mangium bark on N2O emissions from water saturated acacia plantation soil. Tropics 24(2):65–74. https://doi.org/10.3759/tropics.24.65

    Article  Google Scholar 

  58. Mayer M, Prescott CE, Abaker WEA, Augusto L, Cecillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau J-P, Laganiere J, Nouvellon Y, Pare D, Stanturf JA, Vanguelova EI, Vesterdal L (2020) Tamm review: influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For Ecol Manage 466:11812. https://doi.org/10.1016/j.foreco.2020.118127

    Article  Google Scholar 

  59. Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. https://doi.org/10.1016/j.cosust.2013.09.002

    Article  Google Scholar 

  60. Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. https://doi.org/10.1002/jpln.200800030

    CAS  Article  Google Scholar 

  61. Ni X, Groffman PM (2018) Declines in methane uptake in forest soils. Proc Natl Acad Sci U S A 115(34):8587–8590. https://doi.org/10.1073/pnas.1807377115

    CAS  Article  Google Scholar 

  62. Nsombo BM (2016) Evaluation des nutriments et du carbone organique du sol dans le système agroforestier du plateau des Batéké en République Démocratique du Congo. Thèse de Doctorat 2016. Ecole Régionale Post-Universitaire d’Aménagement et de Gestion Intégrés des forêts et Territoires Tropicaux (ERAIFT), p 79–80

  63. Nsombo BM, Lumbuenamo RS, Lejoly JK, Mafuka PMM (2016) Caracteristiques des sols sous savane et sous forêt naturelle sur le plateau des Batéké en République Démocratique du Congo. Tropicultura 34(1):87–97.urn:issn:0771–3312 info:https://www.scp/85018609060

  64. Nzila JD, Bouillet J-P, Laclau J-P, Ranger J (2002) The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. For Ecol Manage 171:209–221. https://doi.org/10.1016/S0378-1127(02)00474-7

    Article  Google Scholar 

  65. Palm CA, Alegre JC, Arevalo L, Mutuo PK, Mosier AR, Coe R (2002) Nitrous oxide and methane fluxes in six different land use systems. Glob Biogeochem Cycles 16:1073. https://doi.org/10.1029/2001GB001855

    CAS  Article  Google Scholar 

  66. Paula RR, Bouillet J-P, Trivelin PCO, Zeller B, Gonçalves JLdM, Nouvellon Y, Bouvet J-M, Plassard C, Laclau J-P (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108. https://doi.org/10.1016/j.soilbio.2015.08.017

    CAS  Article  Google Scholar 

  67. Paustian K, Andren O, Clarholm M, Hansson L, Johansson G, Lagerlof T, LindbergT PR, Sohlenius B (1990) Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. J Appl Ecol 27:60–84. https://doi.org/10.2307/2403568

    Article  Google Scholar 

  68. Peltier R, Bisiaux F, Dubiez E, Marien JN, Freycon V (2017) Agriculture sur brûlis de jachères à acacias: est-ce durable sur les sables du plateau Batéké, en République Démocratique du Congo? In: Restauration de la productivité des sols tropicaux et méditerranéens : contribution à l’agroécologie. Roose Eric (ed.). Marseille : IRD Éditions, pp. 127–139. ISBN 978–2–7099–22–77–7

  69. Pereira AP, de Andrade PA, Bini D, Durrer A, Robin A, Bouillet J-P, Andreote FD, Cardoso EJBN (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS ONE 12(7):e0180371. https://doi.org/10.1371/journal.pone.0180371

    CAS  Article  Google Scholar 

  70. Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DDL, Cotta SR, Gonçalves JLM et al (2018) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:655. https://doi.org/10.3389/fmicb.2018.00655

    Article  Google Scholar 

  71. Pereira APA, Santana MC, Zagatto MRG, Brandani CB, Wang J-T, Verma JP, Singh BK, Cardoso EJBN (2020) Nitrogen-fixing trees in mixed forest systems regulate the ecology of fungal community and phosphorus cycling. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143711

    Article  Google Scholar 

  72. Proces P, Dubiez E, Bisiaux F, Péroches A, Fayolle A. (2017) Production d’Acacia auriculiformis dans le système agroforestier de Mampu, Plateau Batéké, République Démocratique du Congo. Bois For Trop 334. 35p.https://doi.org/10.19182/bft2017.334.a31489

  73. Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153. https://doi.org/10.1016/j.soilbio.2013.07.005

    CAS  Article  Google Scholar 

  74. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem services bundles for analysing trade-offs in diverse landscapes. Proc Natl Acad Sci U S A 107:5242-52-47. https://doi.org/10.1073/pnas.0907284107

  75. Rodriguez JP, Beard JDT, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time and ecosystem services. Ecol Soc 11:28. http://www.ecologyandsociety.org/vol11/iss1/art28/. Accessed 27 Aug 2021

  76. Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231. https://doi.org/10.1007/s10021-001-0067-3

    CAS  Article  Google Scholar 

  77. Rumpel C, Amiraslani F, Koutika L-S, Smith P, Whitehead D, Wollenberg L (2018) Put more carbon in soils to meet Paris climate pledges. Nature 564:32–34. https://doi.org/10.1038/d41586-018-07587-4

    CAS  Article  Google Scholar 

  78. Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M, Koutika L-S, Ladha J, Madari B, Shirato Y, Smith P, Soudi B, Soussana J-F., Whitehead D, Wollenberg L (2019) The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestrate on as a sustainable development strategy. Ambio. https://doi.org/10.1007/s13280-019-01165-2

  79. Russo D, Marziliano PA, Macrì G, Zimbalatti G, Tognetti, R, Lombardi, F (2019) Tree growth and wood quality in pure vs. mixed-species stands of European beech and Calabrian pine in Mediterranean mountain forests. Forests, 11(1), https://doi.org/10.3390/f11010006

  80. Sang PM, Lamb D, Bonner M, Schmidt S (2013) Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant Soil 362:187–200. https://doi.org/10.1007/s11104-012-1281-9

    CAS  Article  Google Scholar 

  81. Sanginga N, Mulungoy K, Ayanaba A (1986) Inoculation of Leucaena leucocephala Lam de Witt with Rhizobium and its nitrogen contribution to a subsequent maize crop. Biol Agric Hortic 3:341–352

    Google Scholar 

  82. Santos FM, Chaer GM, Diniz AR, Balieiro F deC (2017a) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. For Ecol Manage 384:110–121. Dx.https://doi.org/10.1016/j.foreco.2016.10.041

  83. Santos FM, Balieiro FC, Fontes MA, Chaer GM (2017b) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil. https://doi.org/10.1007/s11104-017-3491-7. Accessed 20 Sep 2018

  84. Schwartz D, Namri M (2002) Mapping the total organic carbon in the soils of the Congo. Global Planet Change 33:77–93. https://doi.org/10.1016/S0921-8181(02)00063-2

    Article  Google Scholar 

  85. Sebukyu VB, Mosango DM (2012) Adoption of agroforestry systems by farmers in Masaka District of Uganda. Ethnobotany Res Applic 10:059–068. https://www.ethnobotanyjournal.org/vol10/i1547–3465–10–059.pdf

  86. Sinclair F (1999) A general classification of agroforestry practice. Agrofor Syst 46:161–180. https://doi.org/10.1023/A:1006278928088

    Article  Google Scholar 

  87. Sitters J, Edwards PJ, Venterink HO (2013) Increases of soil C, N, and P pools along an Acacia tree density gradient and their effects on trees and grasses. Ecosystems 16:347–357. https://doi.org/10.1007/s10021-012-9621-4

    CAS  Article  Google Scholar 

  88. Shure J, Marien JN, de Wasseige C, Drigo R, Salbitano F, Dirou S, Nkoua M (2012) Contribution du bois énergie à La Satisfaction des besoins énergétiques des populations d’afrique centrale: Perspectives pour une gestion durable des ressources disponibles. Les forêts du Bassin du Cong : Etat des forêts 2010 : 5: 109-122. https://doi.org/10.2788/48830

  89. Tiarks A, Ranger J (2008) Soil properties in tropical forest plantation: evaluation and effects of site management. In: Nambiar EKS (ed) Site management and productivity in tropical plantations forests: workshop proceedings 22–26 November 2004 Piracicaba, Brazil and 6–9 November 2006 CIFOR Bogor, Indonesia, pp. 191–204. ISBN 978–979–1412–58–2

  90. Tassin J, Rangan H, Kull CA (2012) Hybrid improved tree fallows: harnessing invasive woody legumes for agroforestry. Agroforest Syst 84:417–428. https://doi.org/10.1007/s10457-012-9493-9

    Article  Google Scholar 

  91. Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand JM, Bouillet JP, Mareschal L (2017) Differences in nitrogen cycling and soil mineralization between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. Sth Forests. https://doi.org/10.2989/20702620.2016.1221702

  92. Tchichelle VS (2016) Production de biomasse et quantification des flux d’azote dans une plantation mixte d’Eucalyptus urophylla x grandis et d’Acacia mangium au Congo. Thèse de l’Université de Lorraine, France, p. 92. https://www.scanr.enseignementsup-recherche.gouv.fr/publication/these2016LORR0115

  93. Yu L, Huang Y, Zhang W, Li T, Sun W (2017) Methane uptake in global forests and grasslands form 1981 to 2010. Sci Total Env 607–608:1163–1172. https://doi.org/10.1016/j.scitotenv.2017.07.082

    CAS  Article  Google Scholar 

  94. Van Groningen W, van Kessel C, Hungate BA, Oenema O, Powlson DS, van Groenigen KJ (2017) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol 51(9):4738–4739. https://doi.org/10.1021/acs.est.7b01427

    CAS  Article  Google Scholar 

  95. Verchot LV, Van Noordwijk M, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Change 12:901–918. https://doi.org/10.1007/s11027-007-9105-6

    Article  Google Scholar 

  96. Voigtlaender M, Brandani C, Caldeira D, Tardy F, Bouillet J-P, Goncalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manage 436:56–67. https://doi.org/10.1016/j.foreco.2018.12.055

    Article  Google Scholar 

  97. Wang F, Li Z, Xia H, Zou B, Li N, Liu J, Zhu W (2010) Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science Plant Nutr 56(2):297–306. https://doi.org/10.1111/j.1747-0765.2010.00454.x

    CAS  Article  Google Scholar 

  98. Yang L, Liu N, Ren H, Wanga J (2009) Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecol Manage 257:1786–2179. https://doi.org/10.1016/j.foreco.2009.01.033

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank the anonymous reviewers and editors for their valuable advices and suggestions to improve this paper.

Author information

Affiliations

Authors

Contributions

All authors, i.e., LSK, MN, KT, and MK, collected bibliographic material and wrote the manuscript. The final editing was made by MK and an anonymous colleague. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lydie-Stella Koutika.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regional management practices with positive effects on soil carbon to meet the goals of the 4p1000 initiative

Communicated by Cornelia Rumpel and accepted by Topical Collection Chief Editor Christopher Reyer

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koutika, LS., Taba, K., Ndongo, M. et al. Nitrogen-fixing trees increase organic carbon sequestration in forest and agroforestry ecosystems in the Congo basin. Reg Environ Change 21, 109 (2021). https://doi.org/10.1007/s10113-021-01816-9

Download citation

Keywords

  • Nitrogen-fixing trees
  • 4 per 1000 Initiative
  • Agroforestry
  • Forestry
  • Central Africa