Changes of potential catches for North-East Atlantic small pelagic fisheries under climate change scenarios

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Small- and intermediate-size pelagic fisheries are highly impacted by environmental variability and climate change. Their wide geographical distribution and high mobility makes them more likely to shift their distribution under climate change. Here, we explore the potential impact of different climate change scenarios on the four main commercial pelagic species in the North-East Atlantic (NEA): Atlantic mackerel (Scomber scombrus), European sprat (Sprattus sprattus), Atlantic herring (Clupea harengus) and blue whiting (Micromesistius poutassou). We used a process-based fisheries model (SS-DBEM), where all the target species were exploited at their maximum sustainable yield (MSY), to project future potential catches under a high- and low-future-greenhouse-gas scenario (RCP 2.6 and 8.5, respectively). Two ocean biogeochemical models (GDFL and MEDUSA) were used to force the environmental conditions. Mackerel and sprat are projected to have increases in a potential catch under both scenarios. Herring and blue whiting are projected to increase under the RCP2.6, but future projections under RCP8.5 show mixed responses with decreases or no changes forecasted. Overall, the potential catch is projected to increase in the northern area of the NEA but is projected to decrease in the southern area. These projected changes are mainly driven by changes in temperature and primary production. Shifts in the distribution of pelagic resources may destabilize existing international agreements on sharing of straddling resources as exemplified by the dispute in sharing of quota for Atlantic mackerel. Novel climate-ready policy approaches considering full species distribution are needed to complement current stock-based approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alheit J, Roy C, Kifani S (2009) Decada-scale variability in populations. In: Checkley D, Alheit J, Oozeki Y, Roy C (eds) Climate Change and Small Pelagic Fish Stocks. Cambridge University Press, p 382

  2. Alvarez P, Chifflet M (2012) The fate of eggs and larvae of three pelagic species, mackerel (Scomber scombrus), horse mackerel (Trachurus trachurus) and sardine (Sardina pilchardus) in relation to prevailing currents in the Bay of Biscay: could they affect larval survival? Sci Mar 76(3):573–586. https://doi.org/10.3989/scimar.03298.07H

  3. Anderson CN, Hsieh CH, Sandin SA, Hewitt R, Hollowed A et al (2008) Why fishing magnifies fluctuations in fish abundance. Nature 452(7189):835–839. https://doi.org/10.1038/nature06851

    CAS  Article  Google Scholar 

  4. Astthorsson OS, Valdimarsson H, Gudmundsdottir A, Óskarsson GJ (2012) Climate-related variations in the occurrence and distribution of mackerel (Scomber scombrus) in Icelandic waters. ICES J Mar Sci 69(7):1289–1297. https://doi.org/10.1093/icesjms/fss084

    Article  Google Scholar 

  5. Axelsen BE, Nøttestad L, Fernö A, Johannessen A, Misund OA (2000) ‘Await’in the pelagic: dynamic trade-off between reproduction and survival within a herring school splitting vertically during spawning. Mar Ecol Prog Ser 205:259–269. https://doi.org/10.3354/meps205259

    Article  Google Scholar 

  6. Barange M, Bernal M, Cercole MC, Cubillos L, Cunningham CL et al (2009) Current trends in the assessment and management of small pelagic fish stocks. In: Checkley D, Alheit J, Oozeki Y, Roy C (eds) Climate Change and Small Pelagic Fish Stocks. Cambridge University Press, p 382

  7. Barange M, Merino G, Blanchard JL, Scholtens J, Harle J et al (2014) Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat Clim Chang 4(3):211–216. https://doi.org/10.1038/nclimate2119

    Article  Google Scholar 

  8. Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T et al (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38. https://doi.org/10.1016/j.gloenvcha.2014.03.009

    Article  Google Scholar 

  9. Baudron AR, Fernandes PG (2015) Adverse consequences of stock recovery: European hake, a new “choke” species under a discard ban? Fish Fish 16(4):563–575. https://doi.org/10.1111/faf.12079

    Article  Google Scholar 

  10. Baudron AR, Brunel T, Blanchet MA, Hidalgo M, Chust G et al (2020) Changing fish distributions challenge the effective management of European fisheries. Ecography 43(4):494–505. https://doi.org/10.1111/ecog.04864

  11. Bazilchuk N (2010) Mackerel wars. Front Ecol Environ 8(8):397–397

    Article  Google Scholar 

  12. Beare DJ, Reid DG (2002) Investigating spatio-temporal change in spawning activity by Atlantic mackerel between 1977 and 1998 using generalized additive models. ICES J Mar Sci 59:711–724. https://doi.org/10.1006/jmsc.2002.1207

    Article  Google Scholar 

  13. Berg F, Husebø Å, Godiksen JA, Slotte A, Folkvord A (2017) Spawning time of Atlantic herring (Clupea harengus) populations within a restricted area reflects their otolith growth at the larval stage. Fish Res 194:68–75. https://doi.org/10.1016/j.fishres.2017.05.009

    Article  Google Scholar 

  14. Berge J, Heggland K, Lønne OJ, Cottier F, Hop H et al (2015) First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extensions of its distribution. Arctic:54–61

  15. Blanchard JL, Jennings S, Holmes R, Harle J, Merino G et al (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans Royal Soc B Biol Sci 367(1605):2979–2989. https://doi.org/10.1098/rstb.2012.0231

    Article  Google Scholar 

  16. Blaxter JHS, Holliday FGT (1963) The behaviour and physiology of herring and other clupeids. In: Advances in marine biology, vol 1. Academic Press, pp 261–394

  17. Boyd R, Roy S, Sibly R, Thorpe R, Hyder K (2018) A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel. Ecol Model 382:9–17. https://doi.org/10.1016/j.ecolmodel.2018.04.015

    Article  Google Scholar 

  18. Boyes SJ, Elliott M (2016) Brexit: the marine governance horrendogram just got more horrendous! Mar Pollut Bull 111(1–2)

  19. Bradbury IR, Snelgrove PV (2001) Contrasting larval transport in demersal fish and benthic invertebrates: the roles of behaviour and advective processes in determining spatial pattern. Can J Fish Aquat Sci 58(4):811–823. https://doi.org/10.1139/f01-031

    Article  Google Scholar 

  20. Bruge A, Alvarez P, Fontán A, Cotano U, Chust G (2016) Thermal niche tracking and future distribution of Atlantic mackerel spawning in response to ocean warming. Front Mar Sci 3:86. https://doi.org/10.3389/fmars.2016.00086

    Article  Google Scholar 

  21. Brunel T, Van Damme CJ, Samson M, Dickey-Collas M (2018) Quantifying the influence of geography and environment on the Northeast Atlantic mackerel spawning distribution. Fish Oceanogr 27(2):159–173. https://doi.org/10.1111/fog.12242

    Article  Google Scholar 

  22. Cardinale M, Casini M, Arrhenius F, Håkansson N (2003) Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea. Aquat Living Resour 16(3):283–292. https://doi.org/10.1016/S0990-7440(03)00007-X

    Article  Google Scholar 

  23. Cardinale M, Dörner H, Abella A, Andersen JL, Casey J et al (2013) Rebuilding EU fish stocks and fisheries, a process under way? Mar Policy 39:43–52. https://doi.org/10.1016/j.marpol.2012.10.002

  24. Cendrowicz L (2010) The mackerel wars: Europe’s fish tiff with Iceland. Time, August 27

  25. Chavez FP, Ryan J, Lluch-Cota SE, Niquen CM (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221. https://doi.org/10.1126/science.1075880

    CAS  Article  Google Scholar 

  26. Cheung WW, Pitcher TJ, Pauly D (2005) A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol Conserv 124(1):97–111. https://doi.org/10.1016/j.biocon.2005.01.017

    Article  Google Scholar 

  27. Cheung WWL, Lam VWY, & Pauly D (2008) Modelling present and climate-shifted distribution of marine fishes and invertebrates. Fisheries Centre research report 16 (3), University of British Columbia, Vancouver

  28. Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R et al (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10(3):235–251. https://doi.org/10.1111/j.1467-2979.2008.00315.x

    Article  Google Scholar 

  29. Cheung WW, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68(6):1008–1018. https://doi.org/10.1093/icesjms/fsr012

    Article  Google Scholar 

  30. Cheung WW, Frölicher TL, Asch RG, Jones MC, Pinsky ML et al (2016a) Building confidence in projections of the responses of living marine resources to climate change. ICES J Mar Sci 73(5):1283–1296. https://doi.org/10.1093/icesjms/fsv250

    Article  Google Scholar 

  31. Cheung WW, Jones MC, Reygondeau G, Stock CA, Lam VW et al (2016b) Structural uncertainty in projecting global fisheries catches under climate change. Ecol Model 325:57–66. https://doi.org/10.1016/j.ecolmodel.2015.12.018

    CAS  Article  Google Scholar 

  32. Chust G, Allen JI, Bopp L, Schrum C, Holt J et al (2014) Biomass changes and trophic amplification of plankton in a warmer ocean. Glob Chang Biol 20(7):2124–2139. https://doi.org/10.1111/gcb.12562

    Article  Google Scholar 

  33. Coombs SH, Pipe RK, & Mitchell CE (1981) The vertical distribution of eggs and larvae of blue whiting (Micromesistius poutassou) and mackerel (Scomber scombrus in the eastern North Atlantic and North Sea. Rapports et Procès-Verbaux des Réunions du Conseil Permanent International pour l'Exploration de la Mer

  34. Corten A (2002) The role of “conservatism”in herring migrations. Rev Fish Biol Fish 11(4):339–361. https://doi.org/10.1023/A:1021347630813

    Article  Google Scholar 

  35. Cury P, Bakun A, Crawford RJ, Jarre A, Quinones RA et al (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57(3):603–618. https://doi.org/10.1006/jmsc.2000.0712

    Article  Google Scholar 

  36. Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJ et al (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334(6063):1703–1706. https://doi.org/10.1126/science.1212928

    CAS  Article  Google Scholar 

  37. Da-Rocha JM, Mato-Amboage R (2015) On the benefits of including age-structure in harvest control rules. Environ Resour Econ 64(4):619–641. https://doi.org/10.1007/s10640-015-9891-3

    Article  Google Scholar 

  38. Dickey-Collas M, Payne MR, Trenkel VM, Nash RD (2014) Hazard warning: model misuse ahead. ICES J Marine Sci Journal du Conseil 71(8):2300–2306. https://doi.org/10.1093/icesjms/fst215

    Article  Google Scholar 

  39. Drinkwater KF, Miles M, Medhaug I, Otterå OH, Kristiansen T et al (2014) The Atlantic multidecadal oscillation: its manifestations and impacts with special emphasis on the Atlantic region north of 60 N. J Mar Syst 133:117–130. https://doi.org/10.1016/j.jmarsys.2013.11.001

    Article  Google Scholar 

  40. Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

  41. Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP et al (2013) GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26(7):2247–2267. https://doi.org/10.1175/JCLI-D-12-00150.1

  42. Engelhard GH, Heino M (2004) Maturity changes in Norwegian spring-spawning herring Clupea harengus: compensatory or evolutionary responses? Mar Ecol Prog Ser 272:245–256. https://doi.org/10.3354/meps272245

    Article  Google Scholar 

  43. FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp

  44. Fernandes PG, Cook RM (2013) Reversal of fish stock decline in the Northeast Atlantic. Curr Biol 23(15):1432–1437. https://doi.org/10.1016/j.cub.2013.06.016

    CAS  Article  Google Scholar 

  45. Fernandes JA, Irigoien X, Goikoetxea N, Lozano JA, Inza I et al (2010) Fish recruitment prediction, using robust supervised classification methods. Ecol Model 221(2):338–352. https://doi.org/10.1016/j.ecolmodel.2009.09.020

    Article  Google Scholar 

  46. Fernandes JA, Cheung WW, Jennings S, Butenschön M, Mora L et al (2013a) Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Glob Chang Biol 19:2596–2607. https://doi.org/10.1111/gcb.12231

    Article  Google Scholar 

  47. Fernandes JA, Lozano JA, Inza I, Irigoien X, Pérez A et al (2013b) Supervised pre-processing approaches in multiple class variables classification for fish recruitment forecasting. Environ Model Softw 40:245–254. https://doi.org/10.1016/j.envsoft.2012.10.001

    Article  Google Scholar 

  48. Fernandes JA, Irigoien X, Lozano JA, Inza I, Goikoetxea N et al (2015) Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species. Ecol Inf 25:35–42. https://doi.org/10.1016/j.ecoinf.2014.11.004

    Article  Google Scholar 

  49. Fernandes JA, Kay S, Hossain MA, Ahmed M, Cheung WW et al (2016) Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios. ICES J Mar Sci 73(5):1357–1369. https://doi.org/10.1093/icesjms/fsv217

    Article  Google Scholar 

  50. Fernandes JA, Papathanasopoulou E, Hattam C, Queirós AM, Cheung WW et al (2017) Estimating the ecological, economic and social impacts of ocean acidification and warming on UK fisheries. Fish Fish 18(3):389–411. https://doi.org/10.1111/faf.12183

    Article  Google Scholar 

  51. Fraser HM, Greenstreet SP, Piet GJ (2007) Taking account of catchability in groundfish survey trawls: implications for estimating demersal fish biomass. ICES J Mar Sci 64(9):1800–1819. https://doi.org/10.1093/icesjms/fsm145

    Article  Google Scholar 

  52. Fréon P, Cury P, Shannon L, Roy C (2005) Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull Mar Sci 76(2):385–462. https://www.ingentaconnect.com/content/umrsmas/bullmar/2005/00000076/00000002/art00013#

  53. Fréon P, Bouchon M, Mullon C, García C, Ñiquen M (2008) Interdecadal variability of anchoveta abundance and overcapacity of the fishery in Peru. Prog Oceanogr 79(2–4):401–412. https://doi.org/10.1016/j.pocean.2008.10.011

    Article  Google Scholar 

  54. Frölicher TL, Rodgers KB, Stock CA, Cheung WW (2016) Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob Biogeochem Cycles 30(8):1224–1243. https://doi.org/10.1002/2015GB005338

    CAS  Article  Google Scholar 

  55. Gaines SD, Gaylord B, Largier JL (2003) Avoiding current oversights in marine reserve design. Ecol Appl 13(sp1):32–46. https://doi.org/10.1890/1051-0761(2003)013[0032:ACOIMR]2.0.CO;2

    Article  Google Scholar 

  56. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM et al (2010) World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S., NOAA Atlas NESDIS 71, US Government Printing Office, Washington DC, 398 pp., 2010

  57. Gaylord B, Gaines SD (2000) Temperature or transport? Range limits in marine species mediated solely by flow. Am Nat 155(6):769–789. https://doi.org/10.1086/303357

    Article  Google Scholar 

  58. Geffen AJ, Nash RD, Dickey-Collas M (2011) Characterization of herring populations west of the British Isles: an investigation of mixing based on otolith microchemistry. ICES J Mar Sci 68(7):1447–1458. https://doi.org/10.1093/icesjms/fsr051

    Article  Google Scholar 

  59. Gonçalves P, de Melo AÁ, Murta AG, Cabral HN (2017) Blue whiting (Micromesistius poutassou) sex ratio, size distribution and condition patterns off Portugal. Aquat Living Resour 30:24. https://doi.org/10.1051/alr/2017019

    Article  Google Scholar 

  60. Hátún H, Payne MR, Beaugrand G, Reid PC, Sandø AB et al (2009) Large bio-geographical shifts in the northeastern Atlantic Ocean: from the subpolar gyre, via plankton, to blue whiting and pilot whales. Prog Oceanogr 80:149–162. https://doi.org/10.1016/j.pocean.2009.03.001

    Article  Google Scholar 

  61. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  62. Heath MR, Neat FC, Pinnegar JK, Reid DG, Sims DW et al (2012) Review of climate change impacts on marine fish and shellfish around the UK and Ireland. Aquat Conserv Mar Freshwat Ecosyst 22(3):337–367. https://doi.org/10.1002/aqc.2244

    Article  Google Scholar 

  63. Henderson PA, Henderson RC (2017) Population regulation in a changing environment: long-term changes in growth, condition and survival of sprat, Sprattus sprattus L. in the Bristol Channel, UK. J Sea Res 120:24–34. https://doi.org/10.1016/j.seares.2016.11.003

    Article  Google Scholar 

  64. Hilborn R, Walters CJ (1992) Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman & Hall, New York

    Book  Google Scholar 

  65. Hsieh C-h, Reiss CS, Hunter JR, Beddington JR, May RM et al (2006) Fishing elevates variability in the abundance of exploited species. Nature 443(7113):859–862. https://doi.org/10.1038/nature05232

    CAS  Article  Google Scholar 

  66. Hsieh C-H, Kim HJ, Watson W, Di Lorenzo E, Sugihara G (2009) Climate driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob Chang Biol 15:2137–2152. https://doi.org/10.1111/j.1365-2486.2009.01875.x

    Article  Google Scholar 

  67. Hufnagl M, Peck MA (2011) Physiological individual-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: insights on climate-driven life-history scheduling. ICES J Mar Sci 68(6):1170–1188. https://doi.org/10.1093/icesjms/fsr078

    Article  Google Scholar 

  68. Hughes KM, Dransfeld L, Johnson MP (2014) Changes in the spatial distribution of spawning activity by north-east Atlantic mackerel in warming seas: 1977–2010. Mar Biol 161(11):2563–2576. https://doi.org/10.1007/s00227-014-2528-1

    Article  Google Scholar 

  69. Hundsdorfer W, & Verwer JG (2003). Numerical solution of time-dependent advection-diffusion-reaction equations.Springer, Berlin. 500 p

  70. Huse G (2016) A spatial approach to understanding herring population dynamics. Can J Fish Aquat Sci 73(2):177–188. https://doi.org/10.1139/cjfas-2015-0095

    Article  Google Scholar 

  71. Huse G, Salthaug A, Skogen MD (2008) Indications of a negative impact of herring on recruitment of Norway pout. ICES J Mar Sci 65(6):906–911. https://doi.org/10.1093/icesjms/fsn074

    Article  Google Scholar 

  72. Huse G, Fernö A, Holst JC (2010) Establishment of new wintering areas in herring co-occurs with peaks in the ‘first time/repeat spawner’ratio. Mar Ecol Prog Ser 409:189–198. https://doi.org/10.3354/meps08620

    Article  Google Scholar 

  73. Ibaibarriaga L, Irigoien X, Santos M, Motos L, Fives JM, Franco C et al (2007) Egg and larval distributions of seven fish species in north-east Atlantic waters. Fish Oceanogr 16(3):284–293. https://doi.org/10.1111/j.1365-2419.2007.00430.x

    Article  Google Scholar 

  74. ICES (International Council for the Exploration of the Sea) (2014a) EU request on preliminary FMSY ranges for Baltic cod, herring and sprat stocks. ICES Advice 2014, Book 11; 2014. Report of the ICES Advisory Committee on Fishery Management, Advisory Committee on the Marine Environment and Advisory Committee on Ecosystems, 2014. p. 2

  75. ICES (International Council for the Exploration of the Sea) (2014b) Widely distributed and migratory stocks mackerel in the Northeast Atlantic (combined Southern, Western, and North Sea spawning components). ICES Advice 2014, Book 9; 2014. Update advice for 2014. Report of the ICES Advisory Committee on Fishery Management, Advisory Committee on the Marine Environment and Advisory Committee on Ecosystems, 2014. p. 4

  76. ICES (International Council for the Exploration of the Sea) (2014c) Report of the Working Group on Widely Distributed Stocks (WGWIDE). Copenhagen: ICES CM 2014/ACOM:15, 971

  77. ICES (International Council for the Exploration of the Sea) (2014d) Report of the benchmark workshop on sprat stocks (WKSPRAT), 11–15 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM: 48

  78. ICES (International Council for the Exploration of the Sea) (2015) Manual for International Pelagic Surveys (IPS). Working Group of International Pelagic Surveys. Series of ICES Survey Protocols SISP 9 – IPS. 92 pp

  79. ICES (International Council for the Exploration of the Sea) (2016a) Report of the Workshop on Blue Whiting Long Term Management Strategy Evaluation (WKBWMS), 30 August 2016, ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM:53. 104 pp

  80. ICES (International Council for the Exploration of the Sea) (2016b) Report of the Working Group on Fish Distribution Shifts (WKFISHDISH), 22–25 November 2016, ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM: 55. 197 pp

  81. ICES (International Council for the Exploration of the Sea) (2019a) Interbenchmark Workshop on the assessment of northeast Atlantic mackerel (IBPNEAMac). ICES Scientific Reports, 1:5. 71 pp. https://doi.org/10.17895/ices.pub.4985

  82. ICES (International Council for the Exploration of the Sea) (2019b) Sprat (Sprattus sprattus) in subdivisions 22–32 (Baltic Sea). In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, spr.27.22–32, https://doi.org/10.17895/ices.advice.4754

  83. Jansen T, Campbell A, Kelly C, Hatun H, Payne MR (2012) Migration and fisheries of North East Atlantic mackerel (Scomber scombrus) in autumn and winter. PLoS One 7(12):e51541. https://doi.org/10.1371/journal.pone.0051541

    CAS  Article  Google Scholar 

  84. Jansen T, Post S, Kristiansen T, Óskarsson GJ, Boje J et al (2016) Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol Appl 26(7):2021–2032. https://doi.org/10.1002/eap.1384

    Article  Google Scholar 

  85. Jennings S, Beverton RJH (1991) Intraspecific variation in the life history tactics of Atlantic herring (Clupea harengus L.) stocks. ICES J Mar Sci 48(1):117–125. https://doi.org/10.1093/icesjms/48.1.117

  86. Jennings S, Collingridge K (2015) Predicting consumer biomass, size-structure, produc-tion, catch potential, responses to fishing and associated uncertainties in the world’s ma-rine ecosystems. PLoS One 10(7):e0133794. https://doi.org/10.1371/journal.pone.0133794

    CAS  Article  Google Scholar 

  87. Jennings S, Mélin F, Blanchard JL, Forster RM, Dulvy NK et al (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proc R Soc B Biol Sci 275(1641):1375–1383. https://doi.org/10.1098/rspb.2008.0192

    Article  Google Scholar 

  88. Johnson PO (1977) A review of spawning in the North Atlantic mackerel, Scomber scombrus. Ministry of Agriculture Fisheries and Food, Directorate of Fisheries Research

  89. Jones MC, Dye SR, Fernandes JA, Frölicher TL, Pinnegar JK et al (2013) Predicting the impact of climate change on threatened species in UK waters. PLoS One 8(1):e54216

    CAS  Article  Google Scholar 

  90. Jørgensen HB, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V (2005) Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol Ecol 14(10):3219–3234

  91. Kaschner K, Watson R, Trites AW, Pauly D (2006) Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar Ecol Prog Ser 316:285–310. https://doi.org/10.3354/meps316285

    Article  Google Scholar 

  92. Kearney KA, Stock C, Aydin K, Sarmiento JL (2012) Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: description and validation for the subarctic Pacific. Ecol Model 237:43–62. https://doi.org/10.1016/j.ecolmodel.2012.04.006

    CAS  Article  Google Scholar 

  93. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R et al(2004) A global ocean carbon climatology: results from global data analysis project (GLODAP). Glob Biogeochem Cycles 18(4)

  94. King DPF, Ferguson A, Moffett IJJ (1987) Aspects of the population genetics of herring, Clupea harengus, around the British Isles and in the Baltic Sea. Fish Res 6(1):35–52

    Article  Google Scholar 

  95. Köster FW, Möllmann C, Neuenfeldt S, John MAS, Plikshs M et al (2001) Developing Baltic cod recruitment models. I. Resolving spatial and temporal dynamics of spawning stock and recruitment for cod, herring, and sprat. Can J Fish Aquat Sci 58(8):1516–1533. https://doi.org/10.1139/f01-092

  96. Kotterba P, Moll D, Hammer C, Peck MA, Oesterwind D et al (2017) Predation on Atlantic herring (Clupea harengus) eggs by the resident predator community in coastal transitional waters. Limnol Oceanogr 62(6):2616–2628. https://doi.org/10.1002/lno.10594

    Article  Google Scholar 

  97. Krysov AI, Pronyuk AA, & Rybakov MO (2017) The international regulation of herring, blue whiting and mackerel fishery. In Proceedings of the MSTU (Vol. 20, No. 2, pp. 422-433). Directory of Open Access Journals

  98. Lambert TC, Ware DM (1984) Reproductive strategies of demersal and pelagic spawning fish. Can J Fish Aquat Sci 41(11):1565–1569. https://doi.org/10.1139/f84-194

    Article  Google Scholar 

  99. Lotze HK, Tittensor DP, Bryndum-Buchholz A et al (2019) Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc Natl Acad Sci 116:12907–12912. https://doi.org/10.1073/pnas.1900194116

    CAS  Article  Google Scholar 

  100. Lubchenco J, Grorud-Colvert K (2015) Making waves: the science and politics of ocean protection. Science 350:382. https://doi.org/10.1126/science.aad5443

    CAS  Article  Google Scholar 

  101. MacKenzie BR, Gislason H, Möllmann C, Köster FW (2007) Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Glob Chang Biol 13(7):1348–1367. https://doi.org/10.1111/j.1365-2486.2007.01369.x

    Article  Google Scholar 

  102. MacKenzie BR, Meier HM, Lindegren M, Neuenfeldt S, Eero M et al (2012) Impact of climate change on fish population dynamics in the Baltic Sea: a dynamical downscaling investigation. Ambio 41(6):626–636. https://doi.org/10.1007/s13280-012-0325-y

    Article  Google Scholar 

  103. Martin P, Maynou F, Recasens L, Sabatés A (2016) Cyclic fluctuations of blue whiting (Micromesistius poutassou) linked to open-sea convection processes in the northwestern Mediterranean. Fish Oceanogr 25(3):229–240. https://doi.org/10.1111/fog.12147

    Article  Google Scholar 

  104. McPherson LR, Kjesbu OS (2012) Emergence of an oocytic circumnuclear ring in response to increasing day length in Atlantic herring (Clupea harengus). Mar Biol 159(2):341–353. https://doi.org/10.1007/s00227-011-1812-6

    Article  Google Scholar 

  105. McPherson AA, Stephenson RL, Taggart CT (2003) Genetically different Atlantic herring Clupea harengus spawning waves. Mar Ecol Prog Ser 247:303–309

  106. Melvin GD, Stephenson RL, Power MJ (2009) Oscillating reproductive strategies of herring in the western Atlantic in response to changing environmental conditions. ICES J Mar Sci 66:1784–1792. https://doi.org/10.1093/icesjms/fsp173

    Article  Google Scholar 

  107. Merino G, Barange M, Fernandes JA, Mullon C, Cheung W et al (2014) Estimating the economic loss of recent North Atlantic fisheries management. Prog Oceanogr 129:314–323. https://doi.org/10.1016/j.pocean.2014.04.022

    Article  Google Scholar 

  108. Merino G, Quetglas A, Maynou F, Garau A, Arrizabalaga H et al (2015) Improving the performance of a Mediterranean demersal fishery toward economic objectives beyond MSY. Fish Res 161:131–144. https://doi.org/10.1016/j.fishres.2014.06.010

    Article  Google Scholar 

  109. Möllmann C, Lindegren M, Blenckner T, Bergström L, Casini M et al (2014) Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J Mar Sci 71(5):1187–1197. https://doi.org/10.1093/icesjms/fst123

    Article  Google Scholar 

  110. Montero-Serra I, Edwards M, Genner MJ (2015) Warming shelf seas drive the subtropicalization of European pelagic fish communities. Glob Chang Biol 21(1):144–153. https://doi.org/10.1111/gcb.12747

    Article  Google Scholar 

  111. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. https://doi.org/10.1038/nature08823

    CAS  Article  Google Scholar 

  112. Mullon C, Steinmetz F, Merino G, Fernandes JA, Cheung WWL et al (2016) Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological–economic and governance modelling scenarios. Ecol Model 320:273–291. https://doi.org/10.1016/j.ecolmodel.2015.09.027

    Article  Google Scholar 

  113. Mullowney DR, Rose GA (2014) Is recovery of northern cod limited by poor feeding? The capelin hypothesis revisited. ICES J Mar Sci 71(4):784–793. https://doi.org/10.1093/icesjms/fst188

    Article  Google Scholar 

  114. Nash JF, Dickey-Collas M, Kell LT (2009) Stock and recruitment in North Sea herring (Clupea harengus); compensation and depensation in the population dynamics. Fish Res 95:88–97. https://doi.org/10.1016/j.fishres.2008.08.003

    Article  Google Scholar 

  115. Nøttestad L, Utne KR, Óskarsson GJ, Jónsson SÞ, Jacobsen JA et al (2016) Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES J Marine Sci Journal du Conseil 73(2):359–373. https://doi.org/10.1093/icesjms/fsv218

    Article  Google Scholar 

  116. O'Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE et al (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci 104(4):1266–1271. https://doi.org/10.1073/pnas.0603422104

    CAS  Article  Google Scholar 

  117. Ottersen G, Hjermann DØ, Stenseth NC (2006) Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish Oceanogr 15(3):230–243. https://doi.org/10.1111/j.1365-2419.2006.00404.x

    Article  Google Scholar 

  118. Overholtz WJ, Hare JA, Keith CM (2011) Impacts of Interannual Environmental Forcing and climate change on the distribution of Atlantic mackerel on the U.S. Northeast continental shelf. Mar Coast Fish 3:219–232. https://doi.org/10.1080/19425120.2011.578485

    Article  Google Scholar 

  119. Parmanne R, Rechlin O, Sjöstrand B (1994) Status and future of herring and sprat stocks in the Baltic Sea. Dana 10:29–59. https://www.agris.fao.org/agris-search/search.do?recordID=DK9521336

  120. Pauly D (1980) On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. ICES J Mar Sci 39:175–192. https://doi.org/10.1093/icesjms/39.2.175

    Article  Google Scholar 

  121. Pauly D (2010) Gasping fish and panting squids: Oxygen, temperature and the growth of water-breathing animals. In Kinne O (ed) Excellence in ecology, vol 22. International Ecology Institute, Oldendorf/Luhe, p 216

  122. Payne MR, Egan A, Fässler SM, Hátún H, Holst JC et al (2012) The rise and fall of the NE Atlantic blue whiting (Micromesistius poutassou). Mar Biol Res 8(5–6):475–487. https://doi.org/10.1080/17451000.2011.639778

    Article  Google Scholar 

  123. Payne MR, Ross SD, Clausen LW, Munk P, Mosegaard H, Nash RD (2013) Recruitment decline in North Sea herring is accompanied by reduced larval growth rates. Mar Ecol Prog Ser 489:197–211. https://doi.org/10.3354/meps10392

    Article  Google Scholar 

  124. Payne MR, Barange M, Cheung WW, MacKenzie BR, Batchelder HP, Cormon X et al (2016) Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J Mar Sci 73(5):1272–1282. https://doi.org/10.1093/icesjms/fsv231

  125. Peck MA, Kanstinger P, Holste L, Martin M (2012) Thermal windows supporting survival of the earliest life stages of Baltic herring (Clupea harengus). ICES J Mar Sci 69(4):529–536. https://doi.org/10.1093/icesjms/fss038

    Article  Google Scholar 

  126. Peck MA, Reglero P, Takahashi M, Catalán IA (2013) Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog Oceanogr 116:220–245. https://doi.org/10.1016/j.pocean.2013.05.012

    Article  Google Scholar 

  127. Petitgas P, Reid D, Planque B, Nogueira E, O’Hea B et al (2006) The entrainment hypothesis: an explanation for the persistence and innovation in spawning migrations and life cycle spatial patterns. ICES Document CM

  128. Petitgas P, Alheit J, Peck MA, Raab K, Irigoien X et al (2012) Anchovy population expansion in the North Sea. Mar Ecol Prog Ser 444:1–13. https://doi.org/10.3354/meps09451

    Article  Google Scholar 

  129. Petrakis G, MacLennan DN, Newton AW (2001) Day–night and depth effects on catch rates during trawl surveys in the North Sea. ICES J Mar Sci 58(1):50–60. https://doi.org/10.1006/jmsc.2000.09

    Article  Google Scholar 

  130. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  131. Planque B, Fromentin JM, Cury P, Drinkwater KF, Jennings S et al (2010) How does fishing alter marine populations and ecosystems sensitivity to climate? J Mar Syst 79(3):403–417. https://doi.org/10.1016/j.jmarsys.2008.12.018

    Article  Google Scholar 

  132. Planque B, Loots C, Petitgas P, LindstrøM ULF, Vaz S (2011) Understanding what controls the spatial distribution of fish populations using a multi-model approach. Fish Oceanogr 20(1):1–17. https://doi.org/10.1111/j.1365-2419.2010.00546.x

    Article  Google Scholar 

  133. Possingham HP, Roughgarden J (1990) Spatial population dynamics of a marine organism with a complex life cycle: ecological archives E071-001. Ecology 71(3):973–985. https://doi.org/10.2307/1937366

  134. Post S, Fock HO, Jansen T (2019) Blue whiting distribution and migration in Greenland waters. Fish Res 212:123–135. https://doi.org/10.1016/j.fishres.2018.12.007

    Article  Google Scholar 

  135. Punzón A, Serrano A, Sánchez F, Velasco F, Preciado I et al (2016) Response of a temperate demersal fish community to global warming. J Mar Syst 161:1–10. https://doi.org/10.1016/j.jmarsys.2016.05.001

    Article  Google Scholar 

  136. Queirós AM, Fernandes JA, Faulwetter S, Nunes J, Rastrick SP, Mieszkowska N et al (2015) Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Glob Chang Biol 21(1):130–143. https://doi.org/10.1111/gcb.12675

  137. Queirós AM, Huebert KB, Keyl F, Fernandes JA, Stolte W et al (2016) Solutions for ecosystem-level protection of ocean systems under climate change. Glob Chang Biol 22(12):3927–3936. https://doi.org/10.1111/gcb.13423

    Article  Google Scholar 

  138. Queirós AM, Fernandes J, Genevier L, Lynam CP (2018) Climate change alters fish community size-structure, requiring adaptive policy targets. Fish Fish 19(4):613–621. https://doi.org/10.1111/faf.12278

    Article  Google Scholar 

  139. Renaud PE, Berge J, Varpe Ø, Lønne OJ, Nahrgang J et al (2012) Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida? Polar Biol 35(3):401–412. https://doi.org/10.1007/s00300-011-1085-z

    Article  Google Scholar 

  140. Rönkkönen S, Ojaveer E, Raid T, Viitasalo M (2004) Long-term changes in Baltic herring (Clupea harengus membras) growth in the Gulf of Finland. Can J Fish Aquat Sci 61(2):219–229. https://doi.org/10.1139/f03-167

    Article  Google Scholar 

  141. Ruzzante DE, Mariani S, Bekkevold D, André C, Mosegaard H et al (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc R Soc Lond B Biol Sci 273(1593):1459–1464. https://doi.org/10.1098/rspb.2005.3463

    Article  Google Scholar 

  142. Shephard S, Fung T, Rossberg AG, Farnsworth KD, Reid DG et al (2013) Modelling recovery of Celtic Sea demersal fish community size-structure. Fish Res 140:91–95. https://doi.org/10.1016/j.fishres.2012.12.010

    Article  Google Scholar 

  143. Shephard S, Rindorf A, Dickey-Collas M, Hintzen NT, Farnsworth K et al (2014) Assessing the state of pelagic fish communities within an ecosystem approach and the European Marine Strategy Framework Directive. ICES J Mar Sci 71(7):1572–1585. https://doi.org/10.1093/icesjms/fsu005

    Article  Google Scholar 

  144. Sibert JR, Hampton J, Fournier DA, Bills PJ (1999) An advection–diffusion–reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can J Fish Aquat Sci 56(6):925–938. https://doi.org/10.1139/f99-017

    Article  Google Scholar 

  145. Sinclair M, Tremblay MJ (1984) Timing of spawning of Atlantic herring (Clupea harengus harengus) populations and the match–mismatch theory. Can J Fish Aquat Sci 41(7):1055–1065

    Article  Google Scholar 

  146. Simpson SD, Jennings S, Johnson MP, Blanchard JL, Schön PJ et al (2011) Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr Biol 21(18):1565–1570. https://doi.org/10.1016/j.cub.2011.08.016

    CAS  Article  Google Scholar 

  147. Sparholt H (1990) An estimate of the total biomass of fish in the North Sea. Journal du Conseil: ICES J Mar Sci 46(2):200–210. https://doi.org/10.1093/icesjms/46.2.200

    Article  Google Scholar 

  148. Speirs DC, Greenstreet SP, Heath MR (2016) Modelling the effects of fishing on the North Sea fish community size composition. Ecol Model 321:35–45. https://doi.org/10.1016/j.ecolmodel.2015.10.032

    Article  Google Scholar 

  149. Spijkers J, Boonstra WJ (2017) Environmental change and social conflict: the northeast Atlantic mackerel dispute. Reg Environ Chang 17(6):1835–1851. https://doi.org/10.1007/s10113-017-1150-4

    Article  Google Scholar 

  150. Thorpe RB, Le Quesne WJ, Luxford F, Collie JS, Jennings S (2015) Evaluation and management implications of uncertainty in a multispecies size-structured model of population and community responses to fishing. Methods Ecol Evol 6(1):49–58. https://doi.org/10.1111/2041-210X.12292

    Article  Google Scholar 

  151. Trenkel VM, Huse G, MacKenzie BR, Alvarez P, Arrizabalaga H et al (2014) Comparative ecology of widely distributed pelagic fish species in the North Atlantic: implications for modelling climate and fisheries impacts. Prog Oceanogr 129:219–243. https://doi.org/10.1016/j.pocean.2014.04.030

    Article  Google Scholar 

  152. Trifonova N, Kenny A, Maxwell D, Duplisea D, Fernandes J et al (2015) Spatio-temporal Bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology. Ecol Inf 30:142–158. https://doi.org/10.1016/j.ecoinf.2015.10.003

    Article  Google Scholar 

  153. Tsoukali S, Visser AW, MacKenzie BR (2016) Functional responses of North Atlantic fish eggs to increasing temperature. Mar Ecol Prog Ser 555:151–165. https://doi.org/10.3354/meps11758

    Article  Google Scholar 

  154. van Damme CJ, & Bakker C (2014) Herring larvae surveys 2012-2013: survey reports and results (no. 14.001). IMARES

  155. Volkenandt M, Berrow S, O’Connor I, Guarini JM, O’Donnell C (2015) Prespawning herring distribution in the Irish Celtic Sea between 2005 and 2012. ICES J Mar Sci 72(2):498–507. https://doi.org/10.1093/icesjms/fsu143

    Article  Google Scholar 

  156. Voss R, Quaas M, Schmidt JO, Hoffmann J (2014) Regional trade-offs from multi-species maximum sustainable yield (MMSY) management options. Mar Ecol Prog Ser 498:1–12. https://doi.org/10.3354/meps10639

    Article  Google Scholar 

  157. Walters CJ, Christensen V, Martell SJ, Kitchell JF (2005) Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES J Mar Sci 62(3):558–568. https://doi.org/10.1016/j.icesjms.2004.12.005

    Article  Google Scholar 

  158. Winters GH, Wheeler JP (1996) Environmental and phenotypic factors affecting the reproductive cycle of Atlantic herring. ICES J Mar Sci 53(1):73–88

    Article  Google Scholar 

  159. Winton M, Griffies SM, Samuels BL, Sarmiento JL, Frölicher TL (2013) Connecting changing ocean circulation with changing climate. J Clim 26(7):2268–2278. https://doi.org/10.1175/JCLI-D-12-00296.1

    Article  Google Scholar 

  160. Yool A, Popova EE, Anderson TR (2013) MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies. Geosci Model Dev 6(5):1767–1811. https://doi.org/10.5194/gmd-6-1767-2013

Download references

Acknowledgements

The research was partly funded by the European Union’s 7th Framework and the Horizon 2020 programs under the MyFish (Grant Agreement No. 289257) and CERES (Grant Agreement No. 678193) projects. T. L. Frölicher acknowledges financial support from the Nippon-Foundation Nereus Program. Jose A. Fernandes’ work has been also funded by the Gipuzkoa Talent Fellowships by Gipuzkoa Provincial Council. Paula Alvarez and Guillermo Boyra provided useful insight on species biology and status of pelagic acoustic surveys. This work also contributes to validate the new Marine Copernicus Climate Change Indicators services (https://www.climate.copernicus.eu/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose A. Fernandes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Virginia Burkett

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernandes, J.A., Frölicher, T.L., Rutterford, L.A. et al. Changes of potential catches for North-East Atlantic small pelagic fisheries under climate change scenarios. Reg Environ Change 20, 116 (2020). https://doi.org/10.1007/s10113-020-01698-3

Download citation

Keywords

  • Climate change
  • Marine fisheries
  • Modelling
  • Projections
  • Uncertainty
  • Ecosystem approach
  • Fisheries management
  • Widely distributed species
  • Pelagic species