Impact of cropland displacement on the potential crop production in China: a multi-scale analysis

Abstract

Changes in the amount and location of cropland areas may affect the potential crop production at different spatial scales. However, most studies ignore the impacts of cropland displacement on potential crop production. In many countries, cropland protection policies mainly aim for no loss in cropland area, while there is no restriction on change of cropland location. Taking China as the study area, we analyze the impacts of cropland displacement on potential crop production at four administrative levels during the period 2000 and 2018. At the national level, we find a net decrease in cropland area of 0.81 Mha, while another 19.63 Mha was displaced. The former led to a decrease of 4.20 Mton in potential crop production, while the latter resulted in a decrease of 43.26 Mton as a result of lower quality of the newly cultivated lands. In other words, cropland displacement explains 91% of the total loss in potential crop production at the national scale. However, the contribution of cropland displacement to total change in potential crop production is increasingly smaller at provincial level, municipal level, and county levels. These findings highlight the importance of geographic location on crop production and suggest that cropland policies should consider geographic location in addition to cropland area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexander P, Rounsevell MDA, Dislich C, Dodson JR, Engström K, Moran D (2015) Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob Environ Chang 35:138–147. https://doi.org/10.1016/j.gloenvcha.2015.08.011

    Article  Google Scholar 

  2. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. https://doi.org/10.1038/nclimate2153

    Article  Google Scholar 

  3. d’Amour CB, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb KH, Haberl H, Creutzig F, Seto KC (2017) Future urban land expansion and implications for global croplands. Proc Natl Acad Sci 114:201606036. https://doi.org/10.1073/pnas.1606036114

    Article  CAS  Google Scholar 

  4. Delzeit R, Zabel F, Meyer C, Václavík T (2017) Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg Environ Chang 17(5):1429–1441. https://doi.org/10.1007/s10113-016-0927-1

    Article  Google Scholar 

  5. Deng X, Huang J, Rozelle S, Uchida E (2006) Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 23:372–384. https://doi.org/10.1016/j.landusepol.2005.07.003

    Article  Google Scholar 

  6. Deng L, Liu G, Shangguan Z (2014) Land-use conversion and changing soil carbon stocks in China’s “grain-for-green” program: a synthesis. Glob Chang Biol 20:3544–3556. https://doi.org/10.1111/gcb.12508

    Article  Google Scholar 

  7. Estel S, Kuemmerle T, Levers C, Baumann M, Hostert P (2016) Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ Res Lett 11(2):024015. https://doi.org/10.1088/1748-9326/11/2/024015

    Article  Google Scholar 

  8. Feng L, Du P, Zhu L (2016) Investigating sprawl along China’s urban fringe from a spatio-temporal perspective. Appl Spat Anal Policy 233–250. https://doi.org/10.1007/s12061-015-9149-z

  9. Fischer G, Nachtergaele F, Prieler S, Van Velthuizen HT, Verelst L, Wiberg D (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy

  10. Fuchs R, Herold M, Verburg PH, Clevers JG, Eberle J (2015) Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob Chang Biol 21:299–313. https://doi.org/10.1111/gcb.12714

    Article  Google Scholar 

  11. Fuchs R, Prestele R, Verburg PH (2018) A global assessment of gross and net land change dynamics for current conditions and future scenarios. Earth Syst Dynam 9:441–458. https://doi.org/10.5194/esd-9-441-2018

    Article  Google Scholar 

  12. Ge D, Long H, Zhang Y, Ma L, Li T (2018) Farmland transition and its influences on grain production in China. Land Use Policy 70:94–105. https://doi.org/10.1016/j.landusepol.2017.10.010

    Article  Google Scholar 

  13. Gibson GR, Campbell JB, Zipper CE (2015) Sociopolitical influences on cropland area change in Iraq, 2001-2012. Appl Geogr 62:339–346. https://doi.org/10.1016/j.apgeog.2015.05.007

    Article  Google Scholar 

  14. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2012) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–819. https://doi.org/10.4337/9780857939388

    Article  Google Scholar 

  15. Gollnow F, Lakes T (2014) Policy change, land use, and agriculture: the case of soy production and cattle ranching in Brazil, 2001-2012. Appl Geogr 55:203–211. https://doi.org/10.1016/j.apgeog.2014.09.003

    Article  Google Scholar 

  16. Griffiths P, Müller D, Kuemmerle T, Hostert P (2013) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8(4):045024. https://doi.org/10.1088/1748-9326/8/4/045024

    Article  Google Scholar 

  17. Jiang G, Zhang R, Ma W, Zhou D, Wang X, He X (2017) Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: assessment and policy implications. Land Use Policy 68:80–88. https://doi.org/10.1016/j.landusepol.2017.07.001

    Article  Google Scholar 

  18. Jin X, Zhang Z, Wu X, Xiang X, Sun W, Bai Q, Zhou Y (2016) Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 57:682–693. https://doi.org/10.1016/j.landusepol.2016.06.036

    Article  Google Scholar 

  19. Johansson DJA, Azar C (2007) A scenario based analysis of land competition between food and bioenergy production in the US. Clim Chang 82:267–291. https://doi.org/10.1007/s10584-006-9208-1

    Article  CAS  Google Scholar 

  20. Ke X, van Vliet J, Zhou T, Verburg PH, Zheng W, Liu X (2017) Direct and indirect loss of natural habitat due to built-up area expansion: a model-based analysis for the city of Wuhan, China. Land Use Policy 74:231–239. https://doi.org/10.1016/j.landusepol.2017.12.048

    Article  Google Scholar 

  21. Li T, Long H, Zhang Y, Tu S, Ge D, Li Y, Hu B (2017) Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 60:26–36. https://doi.org/10.1016/j.landusepol.2016.10.013

    Article  CAS  Google Scholar 

  22. Li Y, Li X, Tan M, Wang X, Xin L (2018) The impact of cultivated land spatial shift on food crop production in China, 1990–2010. Land Degrad Dev 29:1652–1659. https://doi.org/10.1002/ldr.2929

    Article  Google Scholar 

  23. Lichtenberg E, Ding C (2008) Assessing farmland protection policy in China. Land Use Policy 25:59–68. https://doi.org/10.1016/j.landusepol.2006.01.005

    Article  Google Scholar 

  24. Liu J, Diamond J (2005) China ’ s environment in a globalizing world. Nature 435:1179–1186. https://doi.org/10.1038/4351179a

    Article  CAS  Google Scholar 

  25. Liu J, Kuang W, Zhang Z, Xu X, Qin Y, Ning J, Zhou W, Zhang S, Li R, Yan C, Wu S, Shi X, Jiang N, Yu D, Pan X, Chi W (2014a) Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. J. Geogr. Sci. 24: 195-210. https://doi.org/10.1007/s11442-014-1082-6

  26. Liu L, Xu X, Liu J, Chen X, Ning J (2014b) Impact of farmland changes on production potential in China during 1990–2010. J Geogr Sci 25(1):19–34. https://doi.org/10.1007/s11442-015-1150-6

    Article  CAS  Google Scholar 

  27. Liu Y, Fang F, Li Y (2014c) Key issues of land use in China and implications for policy making. Land Use Policy 40:6–12. https://doi.org/10.1016/j.landusepol.2013.03.013

    Article  CAS  Google Scholar 

  28. Meyfroidt P, Rudel TK, Lambin EF (2010) Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci 107:20917–20922. https://doi.org/10.1073/pnas.1014773107

    Article  Google Scholar 

  29. Meyfroidt P, Lambin EF, Erb KH, Hertel TW (2013) Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr Opin Environ Sustain 5:438–444. https://doi.org/10.1016/j.cosust.2013.04.003

    Article  Google Scholar 

  30. Meyfroidt P, Chowdhury R, de Bremond A, Ellis EC, Erb K-H, Filatova T, Garrett RD, Grove JM, Heinimann A, Kuemmerle T, Kull CA, Lambin EF, Landon Y, le Polain de Waroux Y, Messerli P, Müller D, Nielsen JØ, Peterson GD, Rodriguez García V, Schlüter M, Turner BL II, Verburg PH (2018) Middle-range theories of land system change. Glob Environ Chang 53:52–67. https://doi.org/10.1016/j.gloenvcha.2018.08.006

    Article  Google Scholar 

  31. Ministry of Land and Resources of China (MLRC) (2016) China land and resources bulletin 2016. Beijing Geol Publ House. http://www.mnr.gov.cn/sj/tjgb/

  32. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257. https://doi.org/10.1038/nature11420

    Article  CAS  Google Scholar 

  33. Niedertscheider M, Kastner T, Fetzel T, Haberl H, Kroisleitner C, Plutzar C, Erb KH (2016) Mapping and analysing cropland use intensity from a NPP perspective. Environ Res Lett 11(1):14008. https://doi.org/10.1088/1748-9326/11/1/014008

    Article  CAS  Google Scholar 

  34. Ning J, Liu J, Kuang W, Xu X, Zhang S, Yan C, Li R, Wu S, Hu Y, Du G, Chi W, Pan T, Ning J (2018) Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J Geogr Sci 28:547–562. https://doi.org/10.1007/s11442-018-1490-0

    Article  Google Scholar 

  35. Pandey B, Seto KC (2015) Urbanization and agricultural land loss in India: comparing satellite estimates with census data. J Environ Manag 148:53–66. https://doi.org/10.1016/j.jenvman.2014.05.014

    Article  Google Scholar 

  36. Paül V, McKenzie FH (2013) Peri-urban farmland conservation and development of alternative food networks: insights from a case-study area in metropolitan Barcelona (Catalonia, Spain). Land Use Policy 30:94–105. https://doi.org/10.1016/j.landusepol.2012.02.009

    Article  Google Scholar 

  37. Pontius RG, Santacruz A (2014) Quantity, exchange, and shift components of difference in a square contingency table. Int J Remote Sens 35:7543–7554. https://doi.org/10.1080/2150704X.2014.969814

    Article  Google Scholar 

  38. Pontius RG, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268. https://doi.org/10.1016/j.agee.2003.09.008

    Article  Google Scholar 

  39. Qi J, Chen J, Wan S, Ai L (2012) Understanding the coupled natural and human systems in Dryland East Asia. Environ Res Lett:7. https://doi.org/10.1088/1748-9326/7/1/015202

  40. Quan B, Ren H, Pontius RG, Liu P (2018) Quantifying spatiotemporal patterns concerning land change in Changsha, China. Landsc Ecol Eng 14:257–267. https://doi.org/10.1007/s11355-018-0349-y

    Article  Google Scholar 

  41. Ramankutty N, Foley JA, Olejniczak NJ (2009) People on the land: changes in global population and croplands during the 20 th century. AMBIO A J Hum Environ 31:251–257. https://doi.org/10.1579/0044-7447-31.3.251

    Article  Google Scholar 

  42. Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energy 35:14–22. https://doi.org/10.1016/j.renene.2009.02.025

    Article  Google Scholar 

  43. Ray DK, Foley JA (2013) Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett 8(4):044041. https://doi.org/10.1088/1748-9326/8/4/044041

    Article  Google Scholar 

  44. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273. https://doi.org/10.1073/pnas.1222463110

    Article  CAS  Google Scholar 

  45. Song W, Pijanowski BC (2013) The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl Geogr 46:158–170. https://doi.org/10.1016/j.apgeog.2013.11.009

    Article  Google Scholar 

  46. Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, da Silva VP, Valentim JF, Vianna M, Assad ED (2014) When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob Environ Chang 28:84–97. https://doi.org/10.1016/j.gloenvcha.2014.06.001

    Article  Google Scholar 

  47. van Vliet J (2019) Direct and indirect loss of natural area from urban expansion. Nat Sustain 2:755–763. https://doi.org/10.1038/s41893-019-0340-0

    Article  Google Scholar 

  48. van Vliet J, Eitelberg DA, Verburg PH (2017) A global analysis of land take in cropland areas and production displacement from urbanization. Glob Environ Chang 43:107–115. https://doi.org/10.1016/j.gloenvcha.2017.02.001

    Article  Google Scholar 

  49. Wang X, Lu C, Fang J, Shen Y (2007) Implications for development of grain-for-green policy based on cropland suitability evaluation in desertification-affected North China. Land Use Policy 24:417–424. https://doi.org/10.1016/j.landusepol.2006.05.005

    Article  CAS  Google Scholar 

  50. Wang J, Zhang Z, Liu Y (2018) Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 74:204–213. https://doi.org/10.1016/j.landusepol.2017.11.037

    Article  Google Scholar 

  51. Wang Y, van Vliet J, Pu L, Verburg PH (2019) Modeling different urban change trajectories and their trade-offs with food production in Jiangsu Province, China. Comput Environ Urban Syst 77:101355. https://doi.org/10.1016/j.compenvurbsys.2019.101355

    Article  Google Scholar 

  52. Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Chang 23:433–438. https://doi.org/10.1016/j.gloenvcha.2012.12.010

    Article  Google Scholar 

  53. Xu X, Wang L, Cai H, Wang L, Liu L, Wang H (2017) The influences of spatiotemporal change of cultivated land on food crop production potential in China. Food Secur 9:485–495. https://doi.org/10.1007/s12571-017-0683-1

    Article  Google Scholar 

  54. Ye Y, Fang X (2012) Expansion of cropland area and formation of the eastern farming-pastoral ecotone in northern China during the twentieth century. Reg Environ Chang 12:923–934. https://doi.org/10.1007/s10113-012-0306-5

    Article  Google Scholar 

  55. Yu Y, Feng K, Hubacek K (2013) Tele-connecting local consumption to global land use. Glob Environ Chang 23:1178–1186. https://doi.org/10.1016/j.gloenvcha.2013.04.006

    Article  Google Scholar 

  56. Yu Q, Hu Q, van Vliet J, Verburg PH, Wu W (2018a) GlobeLand30 shows little cropland area loss but greater fragmentation in China. Int J Appl Earth Obs Geoinf 66:37–45. https://doi.org/10.1016/j.jag.2017.11.002

    Article  Google Scholar 

  57. Yu Q, Van Vliet J, Verburg PH, You L, Yang P, Wu W (2018b) Harvested area gaps in China between 1981 and 2010: effects of climatic and land management factors. Environ Res Lett:13. https://doi.org/10.1088/1748-9326/aaafe0

  58. Yu Q, Xiang M, Wu W, Tang H (2019) Agriculture , ecosystems and environment changes in global cropland area and cereal production : an inter-country comparison. Agric Ecosyst Environ 269:140–147. https://doi.org/10.1016/j.agee.2018.09.031

    Article  Google Scholar 

  59. Zhang L, Wu B, Zhu L, Wang P (2012) Patterns and driving forces of cropland changes in the Three Gorges Area, China. Reg Environ Chang 12:765–776. https://doi.org/10.1007/s10113-012-0291-8

    Article  Google Scholar 

  60. Zumkehr A, Campbell JE (2013) Historical U.S. cropland areas and the potential for bioenergy production on abandoned croplands. Environ Sci Technol 47:3840–3847. https://doi.org/10.1021/es3033132

    Article  CAS  Google Scholar 

  61. Zuo L, Zhang Z, Zhao X, Wang X, Wu W, Yi L, Liu F (2014) Multitemporal analysis of cropland transition in a climate-sensitive area: a case study of the arid and semiarid region of Northwest China. Reg Environ Chang 14:75–89. https://doi.org/10.1007/s10113-013-0435-5

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers 41971240, 41371113, 41701194), The Ministry of Education of Humanities and Social Science project (Grant numbers 20YJC630182,18JHQ081), and the European Research Council (ERC) under the European Union’s Seventh Framework Programme (Grant number 311819 GLOLAND).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinli Ke.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Wolfgang Cramer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Ke, X., van Vliet, J. et al. Impact of cropland displacement on the potential crop production in China: a multi-scale analysis. Reg Environ Change 20, 97 (2020). https://doi.org/10.1007/s10113-020-01690-x

Download citation

Keywords

  • Land use change
  • Cropland displacement
  • Potential crop production
  • Land use policy
  • Food security