Effectiveness of natural protected areas for preventing land use and land cover changes of the Transmexican Volcanic Belt, Mexico

Abstract

Natural protected areas (NPA) are portions of the Mexican territory where the original environment has not been modified and which are protected in order to conserve, restore, and develop biodiversity. Here, we evaluated the effectiveness of 18 NPA located within the Transmexican Volcanic Belt by analyzing deforestation and land use and land cover change (LULCC) between 2002 and 2014. An index of effectiveness (EI) was obtained by adding three parameters: (1) the percentage of the transformed area (TA%), (2) the rate of change inside the NPA (LULCC-R), and (3) the difference between the rate of change inside the NPA and outside (buffer). The sum of the three standardized parameters forms the EI, where NPA were classified as effective (index value > 2), weakly effective (index value between 1 and 2), and noneffective (index value < 1). In addition, we identified the most important transitions between categories of LULCC for each NPA. Only three NPA were classified as effective: Ciénegas de Lerma (EI = 2.29), Volcán Nevado de Colima (EI = 2.08), and Iztaccíhuatl-Popocatépetl (EI = 2.06). Eleven were weakly effective, and the remaining four were noneffective. Bosencheve was the least effective (with all parameters in 0). In terms of transition probabilities in each effectiveness class, effective NPA were characterized by transition probabilities of forest cover recovery. Weakly effective NPA presented exchange probabilities between forest cover and land use. Finally, in noneffective NPA, probabilities indicated transitions from forest cover to agricultural and livestock land use. Our results show that, in general, NPA are not currently effective in containing LULCC processes in the Transmexican Volcanic Belt.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrahms B, DiPrieto D, Graffis A, Hoallander A (2017) Managing biodiversity under climate change: challenges, frameworks, and tools for adaptation. Biodivers Conserv 10:2277–2293. https://doi.org/10.1007/s10531-017-1362-4

    Article  Google Scholar 

  2. Bell EJ, Hinojosa RC (1977) Markov analysis of land use change: continuous time and stationary processes. Socio Econ Plan Sci 8:13e17. https://doi.org/10.1016/0038-0121(77)90041-6

  3. Carabias J, De La Maza J, Cadena R (2003) Capacidades necesarias para el manejo de áreas protegidas. Nature Conservancy, Arlington

    Google Scholar 

  4. Conabio (2018) Protected areas in Mexico. http://www.biodiversidad.gob.mx/v_ingles/region/areasprot/proctectedMexico.html

  5. Conanp (2016) Sistema Nacional de Áreas Protegidas (SINAP). Available at: http://www.gob.mx/conanp/acciones-y-programas/sistema-nacional-de-areas-protegidas-sinap

  6. Conanp (2017). Listado de las Áreas Naturales Protegidas de México (LISTANP). Available at: http://sig.conanp.gob.mx/website/pagsig/listanp/

  7. Conanp (2018). Sistema de información, monitoreo y evaluación para la conservación. Available at: https://simec.conanp.gob.mx/ind2016.php

  8. Conanp and Conabio (2016) Mapa de Áreas Naturales Protegidas. Conanp/ Conabio, Mexico City

    Google Scholar 

  9. Diario Oficial de la Federación (1988) Ley General del Equilibrio Ecológico y Protección al Ambiente. Estados Unidos Mexicanos, Presidencia de la Republica 28–1-88

  10. Díaz-Gallegos JR, Mas JF (2009) La deforestación de los bosques tropicales: una revisión. Mapping 136:83–96

    Google Scholar 

  11. Ervin J (2003) Protected area assesments in perspective. Bioscience 53:819–822. https://doi.org/10.1641/0006-3568(2003)053[0819:PAAIP]2.0.CO;2

  12. Figueroa F, Sánchez-Cordero V (2008) Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodivers Conserv 17:3223–3240. https://doi.org/10.1007/s10531-008-9423-3

    Article  Google Scholar 

  13. Figueroa F, Sánchez-Cordero V, Meave J, Trejo I (2010) Socioeconomic context of land use and cover chance in Mexican biosphere reserves. Environ Conserv 36:180–191. https://doi.org/10.1017/S0376892909990221

  14. Figueroa F, Illoldi-Rangel P, Sánchez-Cordero V, Linaje M (2011) Evaluación de la efectividad de las áreas protegidas para contener procesos de cambio en el uso de suelo y la vegetación. ¿Un índice es suficiente? Rev Mex Biodivers 82:951–963

    Google Scholar 

  15. Geist H, Lambin E (2002) Proximate causes and underlying driving forces of tropical deforestation. BioScience 2:143–150. https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2

  16. Hughes RF, Kauffman JB, Jaramillo VJ (2000) Ecosystem- scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecol Appl 10:515–527. https://doi.org/10.1890/1051-0761(2000)010[0515:ESIODA]2.0.CO;2

  17. INEGI (2005) Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación, 1:250,000, Serie III. Instituto Nacional de Estadística, Geografía e Informática. Aguascalientes, México

  18. INEGI (2009) Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación, 1:250,000, Serie IV. Instituto Nacional de Estadística, Geografía e Informática. Aguascalientes, México

  19. INEGI (2015) Conjunto de datos vectoriales de uso de suelo y vegetación (continuo nacional), Serie V, 1:250,000. Instituto Nacional de Estadística, Geografía e Informática, Dirección General de Geografía, Aguascalientes, México

  20. INEGI (2017) Conjunto de datos vectoriales de Uso del suelo y vegetación. Escala 1:250 000. Serie VI. Capa Unión. Instituto Nacional de Estadística, Geografía e Informática, Dirección General de Geografía, Aguascalientes, México

  21. Koleff P, Urquiza-Haas T (2011) Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México

    Google Scholar 

  22. López A (2012) Deforestación en México: un análisis preliminar. CIDE, Toluca

  23. López-García J, Alcántara-Ayala I (2012) Land-use change and hillslope instability in the monarch butterfly biosphere reserve, Central Mexico. Land Degrad Dev 23:384–397. https://doi.org/10.1002/ldr.2159

  24. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. https://doi.org/10.1038/35012251

  25. Morrone JJ (2005) Hacia una síntesis biogeográfica de México. Rev Mex Biodiv 76:207–252. https://doi.org/10.22201/ib.20078706e.2005.002.303

  26. Morrone JJ, Escalante T, Rodríguez-Tapia G (2017) Mexican biogeographic provinces: map and shapefiles. Zootaxa 4277:277–279. https://doi.org/10.11646/zootaxa.4277.2.8

  27. Muñoz C, Alarcón G, Fernández JC (2003) Pixel patterns of deforestation in Mexico 1993–2000, INE Working Paper Series, INE-0401. INE-Semarnat, Mexico City

  28. Peralta-Rivero C, Torrico J, Vos V (2015) Tasas de cambios de coberturas de suelo y deforestación (1986-2011) en el municipio de Riberalta, Amazonía boliviana. Ecol Boliv 50:91–114

  29. Perevochtchikova M, Rojo-Negrete I, Martínez S, Fuentes-Mariles G (2015) Información hidroclimatológica para la evaluación de los efectos del programa de Pago por Servicios Ambientales Hidrológicos. Caso de estudio de la comunidad de San Miguel y Santo Tomás Ajusco, México. Rev Lat Rec Nat 11:37–55. https://doi.org/10.14350/rig.56437

  30. Pielke A, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, KKlein G, Nair U, Betts R, Fall S, Reichstein M, Kabat P, Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim CHANGE 2:828–850. https://doi.org/10.1002/wcc.144

  31. Pineda-López MR, Ruelas E, Sánchez-Velásquez L, Espinoza M, Rojo A, Vásquez-Morales SG (2017) Dynamic of land use and land cover in a Mexican National Park. Madera bosques 23:87–99. https://doi.org/10.21829/myb.2017.233149

  32. Pisanty I, Urquiza-Haas E, Vargas-Mena A (2016) Instrumentos de conservación in situ en México: logros y retos. In: Conabio (ed) Capital Natural de México, vol IV. Capacidades humanas e institucionales, Conabio, México City, pp 245–302

    Google Scholar 

  33. Plassmann K (2018) Direct and indirect land use change. In: Kaltschmitt M, Neuling U (eds) Biokerosene. Springer, Berlin, pp 375–402

    Chapter  Google Scholar 

  34. Pontius RG, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268. https://doi.org/10.1016/j.agee.2003.09.008.

  35. Puyravaud JP (2003) Standarizing the calculation of the anual rate of deforestation. For Ecol Manag 177:593–596. https://doi.org/10.1016/s0378-1127(02)00335-3

  36. QGIS Development Team (2016) QGIS geographic information system. Open source Geospatial Foundation. Available from: http://qgis.osgeo.org

  37. Ramírez MI, Saenz-Romero C, Rehfeldt G, Salas-Canela L (2015) Threats to the availability of overwintering habitat in the monarch butterfly biosphere reserve: land use and climate change. In: Oberhauser KS, Nail KR, Altizer S (eds) Monarchs in a changing world: biology and conservation of an iconic butterfly. Cornell University, Ithaca, pp 157–168

    Google Scholar 

  38. Sánchez-Aguilar R, Rebollar-Domínguez S (1999) Deforestación en la Península de Yucatán, los retos que enfrentar. Madera Bosques 5:3–17

    Article  Google Scholar 

  39. Sánchez-Cordero V, Illoldi-Rangel P, Escalante T, Figueroa F, Rodríguez G, Linaje M, Fuller T, Sarkar S (2009) Deforestation and biodiversity conservation in Mexico. In: Columbus AM, Kuznetsov L (eds) Endangered species: new research. Nova Science Publishers, Inc., New York, pp 279–297

    Google Scholar 

  40. Semarnap (1996) Programa de Medio Ambiente 1995–2000. Semarnap, Mexico City

    Google Scholar 

  41. Soares-Filho BS, Pennachin CL, Cerqueira G (2002) DINAMICA - a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235. https://doi.org/10.1016/S0304-3800(02)00059-5

  42. Soares-Filho BS, Rodrigues HO, Follador M (2013) A hybrid analytical-heuristic method for calibrating land-use change models. Environ Model Softw 43:80–87. https://doi.org/10.1016/S0304-3800(02)00059-5

  43. Stolcke A, Kajarekar J, Ferrer L (2008) Nonparametric feature normalization for SVM-based speaker verification, Proc. ICASSP, Las Vegas

  44. Suárez MM, Téllez OV, Lira RS, Villaseñor J (2013) Una regionalización de la Faja Volcánica Transmexicana con base en su riqueza florística. Bot Sci 91:93–105

  45. Takada T, Miyamoto A, Hasegawa SF (2010) Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landsc Ecol 25:561–572. https://doi.org/10.1007/s10980-009-9433-x

  46. Torres A, Luna I (2006) Análisis de trazos para establecer áreas de conservación en la Faja Volcánica Transmexicana. Interciencia 31:849–866

    Google Scholar 

  47. Torres-Rojo JM, Flores-Xolocotzi R (2016) Deforestation and land use change in Mexico. J Sustain For 12:171–192. https://doi.org/10.1300/J091v12n01_09

    Article  Google Scholar 

  48. UNESCO (1994) The convention on wetlands of international importance especially as waterfowl habitat: report. UNESCO, Paris

    Google Scholar 

  49. UNFCCC (2001) Report of the conference of the parties on its seventh session, held at Marrakesh from 29 October to 10 November 2001. UNFCCC, Marrakesh

    Google Scholar 

  50. Vidal O, López-García J, Rendón-Salinas ED (2014) Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv Biol 28:177–186. https://doi.org/10.1111/cobi.12138

  51. Williams BK, Brown ED (2012) Adaptive management: the U.S. Department of the Interior applications guide. U.S. Department of the Interior, Washington, DC

    Google Scholar 

Download references

Acknowledgments

This research was carried out through the support of the Program UNAM-DGAPA-PAPIIT, Project IN217717. Lynna Kiere reviewed the English writing of this manuscript. Luis José Aguirre-López designed the flowchart.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tania Escalante.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Tony Weir

Electronic supplementary material

ESM 1

(DOCX 54 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Tomasini, M.A., Escalante, T. & Farfán, M. Effectiveness of natural protected areas for preventing land use and land cover changes of the Transmexican Volcanic Belt, Mexico. Reg Environ Change 20, 84 (2020). https://doi.org/10.1007/s10113-020-01660-3

Download citation

Keywords

  • Deforestation
  • Land use
  • Land cover change
  • Transition matrix
  • Vegetation