Long-term altitudinal change in bird richness in a Mediterranean mountain range: habitat shifts explain the trends

Abstract

The altitudinal distribution of species richness is affected by climate and habitat changes, and the balance between these drivers will produce an idiosyncratic pattern in each mountain range. However, the potential effect of habitat change has rarely been included in studies designed to detect the effect of climate change on mountain biodiversity. This paper explores the changes in the altitudinal distribution of forest bird richness in the Guadarrama Mountains (600–2400 m a.s.l., Central Spain) over the last several decades. These mountains are affected by global warming and increased tree density resulting from rural abandonment. Nothing is known, however, about the way these changes have affected the altitudinal distribution of bird richness. Bird counts carried out in 1976–1980 were repeated in 2014–2015 along an altitudinal succession of forest belts. The results show that the relationship of bird richness to elevation shifted from a hump-shaped model typical of dry mountains to a monotonic negative model characteristic of humid mountains. These trends diverged from predictions on the effects of climate warming and were related to a loss of bird richness in endemic Scots pinewoods in the upper parts of the mountains. Variations in the composition of bird assemblages suggested that these pinewoods have experienced a process of tree densification and understory loss. As a result, the reshuffling of the altitudinal distribution of bird richness produced by habitat changes has eclipsed any effects of climate warming. These results emphasize the importance of considering habitat and climate interactions when exploring the altitudinal shift of species richness in the context of global change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bibby CK, Burgess ND, Hill DD, Mustoe SH (2000) Bird census techniques. Academic Press, London

    Google Scholar 

  2. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  3. Cusens J, Wright SD, McBride PD, Gillman LN (2012) What is the form of the productivity–animal-species-richness relationship? A critical review and meta-analysis. Ecology 93:2241–2252. https://doi.org/10.1890/11-1861.1

    Article  Google Scholar 

  4. Devictor V, Van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström Å, Reif J, Roy D, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Chang 2:121–124. https://doi.org/10.1038/nclimate1347

    Article  Google Scholar 

  5. Díaz L (2006) Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. Forest Ecol Manag 223:54–65. https://doi.org/10.1016/j.foreco.2005.10.061

    Article  Google Scholar 

  6. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. https://doi.org/10.1046/j.1466-822X.2003.00322.x

    Article  Google Scholar 

  7. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  8. Dray S, Legendre P (2008) Testing the species traits–environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412. https://doi.org/10.1890/08-0349.1

    Article  Google Scholar 

  9. Elsen PR, Tingley MW (2015) Global mountain topography and the fate of montane species under climate change. Nat Clim Chang 5:772–776. https://doi.org/10.1038/nclimate2656

    Article  Google Scholar 

  10. Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araujo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gomez-García D, Grytnes GA, Heegaard E, Hoistad H, Nogués-Bravo D, Normand S, Puscas M, Sebastià MT, Stanisci A, Thurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21stcentury climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17:2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x

    Article  Google Scholar 

  11. Felton A, Gustafsson L, Roberge JM, Ranius T, Hjältén J, Rudolphi J, Lindbladh M, Weslien J, .Rist L, Brunet J, Felton AM (2016) How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: insights from Sweden. Biol Conserv 194: 11–20. https://doi.org/10.1016/j.biocon.2015.11.030

    Article  Google Scholar 

  12. Flores O, Seoane J, Hevia V, Azcárate FM (2018) Spatial patterns of species richness and nestedness in ant assemblages along an elevational gradient in a Mediterranean mountain range. PLoS One 13:e0204787. https://doi.org/10.1371/journal.pone.0204787

    CAS  Article  Google Scholar 

  13. Fox J, Bouchet-Valat M (2020) Rcmdr: R commander. R package version 2.6–2, http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/

  14. García-Romero A, Muñoz J, Andrés N, Palacios D (2010) Relationship between climate change and vegetation distribution in the Mediterranean mountains: Manzanares Head valley, Sierra De Guadarrama (Central Spain). Clim Chang 100:645–666. https://doi.org/10.1007/s10584-009-9727-7

    Article  Google Scholar 

  15. Giménez-Benavides L, Escudero A, Iriondo JM (2007) Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173:367–382. https://doi.org/10.1111/j.1469-8137.2006.01932.x

    Article  Google Scholar 

  16. Giorgio F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  17. Gonzalez-Hidalgo JC, Peña-Angulo D, Brunetti M, Cortesi N (2016) Recent trend in temperature evolution in Spanish mainland (1951–2010): from warming to hiatus. Int J Climatol 36:2405–2416. https://doi.org/10.1002/joc.4519

    Article  Google Scholar 

  18. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  19. Gutiérrez-Illán J, Gutiérrez D, Wilson RJ (2010) The contributions of topoclimate and land cover to species distributions and abundance: fine-resolution tests for a mountain butterfly fauna. Glob Ecol Biogeogr 19:159–173. https://doi.org/10.1111/j.1466-8238.2009.00507.x

    Article  Google Scholar 

  20. Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR, Müller D, Plutzar C, Stürck J, Verkerk PJ, Verburg PH, Reenberg A (2016) Hotspots of land use change in Europe. Environ Res Lett 11(64020). https://doi.org/10.1088/1748-9326/11/6/064020

  21. La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. P Roy Soc Lond B 277:3401–3410. https://doi.org/10.1098/rspb.2010.0612

    Article  Google Scholar 

  22. Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Svenning JC (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33:295–303. https://doi.org/10.1111/j.1600-0587.2010.06279.x

    Article  Google Scholar 

  23. Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856–863. https://doi.org/10.1111/j.1600-0587.2010.06904.x

    Article  Google Scholar 

  24. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x

    Article  Google Scholar 

  25. López I, Pardo M (2018) Socioeconomic indicators for the evaluation and monitoring of climate change in national parks: an analysis of the Sierra de Guadarrama national park (Spain). Environments 5. https://doi.org/10.3390/environments5020025

  26. Martí R, Del Moral JC (eds) (2003) Atlas de la aves reproductoras de España. Ministerio de Medio Ambiente and SEO/BirdLife, Madrid

    Google Scholar 

  27. McCain CM (2009) Global analysis of bird elevational diversity. Glob Ecol Biogeogr 18:346–360. https://doi.org/10.1111/j.1466-8238.2008.00443.x

    Article  Google Scholar 

  28. McCain CM, Beck J (2016) Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Glob Ecol Biogeogr 25:299–310. https://doi.org/10.1111/geb.12410

    Article  Google Scholar 

  29. McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: encyclopedia of life sciences (ELS). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0022548

    Google Scholar 

  30. Morales-Molino C, Colombaroli D, Valbuena-Carabaña M, Tinner W, Salomón RL, Carrión JS, Gil L (2017) Land-use history as a major driver for long-term forest dynamics in the Sierra de Guadarrama National Park (central Spain) during the last millennia: implications for forest conservation and management. Glob Planet Chang 152:64–75. https://doi.org/10.1016/j.gloplacha.2017.02.012

    Article  Google Scholar 

  31. Navarro L, Pereira H (eds) (2015) Rewilding European landscapes. Springer, New York. https://doi.org/10.1007/978-3-319-12039-3

    Google Scholar 

  32. Nieto-Sánchez S, Gutiérrez D, Wilson RJ (2015) Long-term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Divers Distrib 21:950–961. https://doi.org/10.1111/ddi.12316

    Article  Google Scholar 

  33. Nogués-Bravo D, Araújo MB, Romdal TS, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220. https://doi.org/10.1038/nature06812

    CAS  Article  Google Scholar 

  34. Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Schneeweiss GM (2018) Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Sci Rep UK 8:10345. https://doi.org/10.1038/s41598-018-28504-9

    CAS  Article  Google Scholar 

  35. Pacifici M, Visconti P, Butchart SH, Watson JE, Cassola FM, Rondinini C (2017) Species’ traits influenced their response to recent climate change. Nat Clim Chang 7:205–208. https://doi.org/10.1038/nclimate3223

    Article  Google Scholar 

  36. Paillet Y, Bergès L, Hjälten J, Odor P, Avon C, Bernhardt-Romermann M, Bijlsma RJ, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Meszaros I, Sebastia MT, Schmidt W, Standovar T, Tothmeresz B, Uotila A, Valladares F, Vellak K, Virtanen R (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x

    Article  Google Scholar 

  37. Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses. R. Bioinformatics 35:526–528. https://doi.org/10.1093/bioinformatics/bty633

    CAS  Article  Google Scholar 

  38. Pardo F, Gil L (2005) The impact of traditional land use on woodlands: a case study in the Spanish Central System. J Hist Geogr 31:390–408. https://doi.org/10.1016/j.jhg.2004.11.002

    Article  Google Scholar 

  39. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol S 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  40. Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Gerschlauer F, Gütlein A, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Kühnel A, Mayr AV, Mwangomo E, Ngereza C, Njovu HK, Otte I, Pabst H, Renner M, Röder J, Rutten G, Costa DS, Sierra-Cornejo N, Vollstädt MGR, Dulle HI, Eardley CD, Howell KM, Keller A, Peters RS, Ssymank A, Kakengi V, Zhang J, Bogner C, Böhning-Gaese K, Brand R, Hertel D, Huwe B, Kiese R, Kleyer M, Kuzyakov Y, Nauss T, Schleuning M, Tschapka M, Fischer M, Steffan-Dewenter I (2019) Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568:88–92. https://doi.org/10.1038/s41586-019-1048-z

    CAS  Article  Google Scholar 

  41. Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x

    Article  Google Scholar 

  42. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x

    Article  Google Scholar 

  43. Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J (2019) Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365:1108–1113. https://doi.org/10.1126/science.aax0149

    CAS  Article  Google Scholar 

  44. Regos A, Domínguez J, Gil-Tena A, Brotons L, Ninyerola M, Pons X (2016) Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Reg Environ Chang 16:199–211. https://doi.org/10.1007/s10113-014-0740-7

    Article  Google Scholar 

  45. Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39:162–176. https://doi.org/10.1111/j.1365-2699.2011.02592.x

    Article  Google Scholar 

  46. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huennke LF, Kackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Wald DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    CAS  Article  Google Scholar 

  47. Sanders NJ, Rahbek C (2013) The patterns and causes of elevational diversity gradients. Ecography 35:1–3. https://doi.org/10.1111/j.1600-0587.2011.07338.x

    Article  Google Scholar 

  48. Sanz-Elorza M, Dana ED, González A, Sobrino E (2003) Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of climate warming. Ann Bot London 92:273–228. https://doi.org/10.1093/aob/mcg130

    Article  Google Scholar 

  49. Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88. https://doi.org/10.1046/j.1365-294X.1999.00527.x

    Article  Google Scholar 

  50. Sirami C, Caplat P, Popy S, Clamens A, Arlettaz R, Jiguet F, Brotons L, Martin JL (2016) Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob Ecol Biogeogr 26:385–394. https://doi.org/10.1111/geb.12555

    Article  Google Scholar 

  51. Sociedad Española de Ciencias Forestales (2010) Situación de los bosques y del sector forestal en España. SECF, Madrid

    Google Scholar 

  52. Suggitt AJ, Wilson RJ, Isaac NJB, Beale CM, Auffret AG, August T, Bennie JJ, Humphrey QP, Duffield S, Fox R, Hoplins JJ, Macgregir NA, Morecroft MD, Walker KJ, Maclean IMD (2018) Extinction risk from climate change is reduced by microclimatic buffering. Nat Clim Chang 8:713. https://doi.org/10.1038/s41558-018-0231-9

    Article  Google Scholar 

  53. Tellería JL (1987) Biogeografía de la avifauna nidificante en España central. Ardeola 34:145–166

    Google Scholar 

  54. Tellería JL (2019) Altitudinal shifts in forest birds in a Mediterranean mountain range: causes and conservation prospects. Bird Conserv Int. https://doi.org/10.1017/S0959270919000455

  55. Tellería JL, Potti J (1984) Aspectos Ornitogeográficos de los melojares (Quercus Pyrenaica Willd) del Sistema Central. Studia Oecológica 3:247–258

    Google Scholar 

  56. Wiens J (1989) The ecology of bird communities. Foundations and patterns, vol 1. Cambridge Univ press, Cambridge

    Google Scholar 

  57. Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat V (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146. https://doi.org/10.1111/j.1461-0248.2005.00824.x

    Article  Google Scholar 

  58. Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Chang Biol 13:1873–1887. https://doi.org/10.1111/j.1365-2486.2007.01418.x

    Article  Google Scholar 

  59. Wood SN, Pya N, Saefken B (2016) Smoothing parameter and model selection for general smooth models (with discussion). J Am Stat Assoc 111:1548–1575. https://doi.org/10.1080/01621459.2016.1180986

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This paper is a contribution to the project CGL2017-85637-P (Life at the border: population differentiation of forest birds south of the Palearctic) granted by the Spanish Ministry of Science, Innovation and Universities. Two anonymous reviewers considerably improved an early version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Luis Tellería.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Alta de Vos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tellería, J.L. Long-term altitudinal change in bird richness in a Mediterranean mountain range: habitat shifts explain the trends. Reg Environ Change 20, 69 (2020). https://doi.org/10.1007/s10113-020-01657-y

Download citation

Keywords

  • Climate change
  • Elevation gradient
  • Forest birds
  • Habitat change
  • Species richness
  • Vegetation dynamics