Skip to main content

The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast

Abstract

This study uses the results of 28 CMIP5 global climate projections to link regional climate extremes in the Mediterranean region to the global mean annual surface temperature change. It shows that global warming will further increase the existing difference in intensity of precipitation and hydrological extremes between north and south Mediterranean areas (SMed and NMed, respectively), while the increase/decrease of warm/cold temperature extremes will be only marginally larger in the SMed. The Simple daily precipitation intensity index (SDII) and the total precipitation during very wet days (R95pTOT) are already larger in the NMed than in the SMed; they will increase with global warming at a rate of approximately 0.1 mm/K and 5 mm/K, respectively, in the NMed, with no significant change in the SMed. The maximum number of consecutive dry days (CDD) is already larger in the SMed than in the NMed and will increase more in the former than in the latter (rates are about 8 days/K and 5 days/K, respectively). Global warming will not affect the difference of maximum number of consecutive wet days (CWD), which is presently larger in the NMed than in the SMed and will decrease at a similar rate (about 0.5 days/K) in both areas. Changes of temperature extremes (warm nights, TN90p, and cold days, TX10p) will be similar in the north and south Mediterranean, though marginally larger in several areas of the SMed than in the NMed. Their increase will be dramatic and with a 4 K global warming almost all nights will be warm and there will be no cold days.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. Source: United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision, custom data acquired via website. https://population.un.org/wpp/DataQuery/

  2. Source: United Nations: https://www.un.org/en/development/desa/policy/wesp/wesp_current/2014wesp_country_classification.pdf

  3. Among brackets, the 10th to 90th percentile range is reported.

  4. Among brackets, the 10th to 90th percentile range is reported.

  5. Here, the definition of warm nights and cold days is based on the 1961–1990 reference period

Abbreviations

CDD:

annual maximum length of consecutive dry days; units, number of days

CMIP5:

Coupled Model Intercomparison Project Phase 5

CWD:

annual maximum length of consecutive wet days; units, number of days

GCM:

global climate model

GMASTA:

global mean annual surface air temperature anomaly

GNI:

per capita gross national income

MedR:

Mediterranean region (from 30 N to 46 N and from 7 W to 37 E)

NMed:

north Mediterranean areas (areas of MedR north of 38 N)

SDII:

standard daily intensity index (mean daily precipitation during wet days; units, millimeter)

SMed:

south Mediterranean areas (areas of MedR south of 38 N)

SRES:

special report on emission scenarios

R95pTOT:

average annual total precipitation in days exceeding the 95th percentile intensity threshold (units, millimeter)

RCM:

regional climate model

RCP:

representative concentration pathway

TN90p:

percent of warm nights, fraction (%) of days with minimum temperature above the 90th percentile of the daily minimum temperature of the 1961–1990 period

TX10p:

percent of cold days, fraction (%) of days with maximum temperature below the 10th percentile of the daily maximum temperature of the 1961–1990 period

References

  • Ahmadalipour A, Moradkhani H and Kumar M (2019) Mortality risk from heat stress expected to hit poorest nations the hardest. Climatic Change 152:569–579. https://doi.org/10.1007/s10584-018-2348-2

  • Alfieri L, Feyen L, Dottori F, Bianchi A (2015) Ensemble flood risk assessment in Europe under high end climate scenarios. Glob Environ Chang 35:199–212. https://doi.org/10.1016/j.gloenvcha.2015.09.004

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95. https://doi.org/10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Caloiero T, Veltri S, Caloiero P, Frustaci F (2018) Drought analysis in Europe and in the Mediterranean Basin using the standardized precipitation index. Water 10(8):1043. https://doi.org/10.3390/w10081043

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:7–30. https://doi.org/10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Conte D and Lionello P. (2019) Effect of model resolution on intense and extreme precipitation over the Mediterranean region (in preparation)

  • Cramer W, Guiot J, Fader M, Garrabou J, Gattuso J-P, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Chang 8:972–980. https://doi.org/10.1038/s41558-018-0299-2

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Déqué M, Somot S, Sanchez-Gomez E, Goodess CM, Jacob D, Lenderink G, Christensen OB (2012) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964

    Article  Google Scholar 

  • Domínguez-Castro F, Vicente-Serrano SM, Tomás-Burguera M, Peña-Gallardo M, Beguería S, El Kenawy A, Luna Y, Morata A (2019) High spatial resolution climatology of drought events for Spain: 1961–2014. Int J Climatol 39:5046–5062. https://doi.org/10.1002/joc.6126

    Article  Google Scholar 

  • Efthymiadis D, Goodess CM, Jones PD (2011) Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat Hazards Earth Syst Sci 11:2199–2214. https://doi.org/10.5194/nhess-11-2199-2011

    Article  Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. https://doi.org/10.1038/ngeo866

    CAS  Article  Google Scholar 

  • Fowler HJ, Ekström M, Blenkinsop S, Smith AP (2007) Estimating change in extreme European precipitation using a multimodel ensemble. J Geophys Res 112:D18104. https://doi.org/10.1029/2007JD008619

    Article  Google Scholar 

  • García-Herrera R, Garrido-Perez JM, Barriopedro D, Ordóñez C, Vicente-Serrano SM, Nieto R, Gimeno L, Sorí R, Yiou P (2019) The European 2016/17 drought. J Clim 32:3169–3187. https://doi.org/10.1175/JCLI-D-18-0331.1

    Article  Google Scholar 

  • Gasparrini A, Guo Y, Sera F, Vicedo-Cabrera AM, Huber V, Tong S, de Sousa Zanotti Stagliorio Coelho M, Nascimento Saldiva PH, Lavigne E, Matus Correa P, Valdes Ortega N, Kan H, Osorio S, Kyselý J, Urban A, Jaakkola JJK, Ryti NRI, Pascal M, Goodman PG, Zeka A, Michelozzi P, Scortichini M, Hashizume M, Honda Y, Hurtado-Diaz M, Cruz JC, Seposo X, Kim H, Tobias A, Iñiguez C, Forsberg B, Åström DO, Ragettli MS, Guo YL, Wu CF, Zanobetti A, Schwartz J, Bell ML, Dang TN, Van DD, Heaviside C, Vardoulakis S, Hajat S, Haines A, Armstrong B (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1:360-e367. https://doi.org/10.1016/S2542-5196(17)30156-0

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Gosling S, Zaherpour J, Mount NJ, Hattermann FF, Dankers R, Arheimer B, Breuer L, Ding J, Haddeland I, Kumar R, Kundu D, Liu J, van Griensven A, Veldkamp TIE, Vetter T, Wang X, Zhang X (2017) A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1C, 2C and 3C. Clim Chang 141:577–595. https://doi.org/10.1007/s10584-016-1773-3

    Article  Google Scholar 

  • Gouveia CM, Trigo RM, Beguería S, Vicente-Serrano SM (2017) Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Glob Planet Chang 151:15–27

    Article  Google Scholar 

  • Grillakis M (2019) Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci Total Environ 660:1245–1255

    CAS  Article  Google Scholar 

  • Hertig E, Tramblay Y (2017) Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob Planet Chang 151:36–48

    Article  Google Scholar 

  • Hertig E, Seubert S, Jacobeit J (2010) Temperature extremes in the Mediterranean area: trends in the past and assessments for the future. Nat Hazards Earth Syst Sci 10:2039–2050. https://doi.org/10.5194/nhess-10-2039-2010

    Article  Google Scholar 

  • Hochman A, Mercogliano P, Alpert P, Saaroni H, Bucchignani E (2018) High-resolution projection of climate change and extremity over Israel using COSMO-CLM. Int J Climatol 38:5095–5106. https://doi.org/10.1002/joc.5714

    Article  Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American. Meteorol Soc 77(3):437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kendrovski V, Baccini M, Martinez GS, Wolf T, Paunovic E, Menne B (2017) Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries. Int. J. Environ. Res. Public Health 14:729.

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50‐year reanalysis: Monthly means CD‐ROM and documentation. Bull. Am. Meteorol. Soc. 82:247–267.

  • Koutroulis AG, Papadimitriou LV, Grillakis MG, Tsanis IK, Wyser K, Betts RA (2018) Freshwater vulnerability under high end climate change. A pan-European assessment. Sci Total Environ 13:271–286

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on ClimateChange. Cambridge University Press, Cambridge, pp 1267–1326

    Google Scholar 

  • Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkeş M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37:L04802. https://doi.org/10.1029/2009GL041841

    Article  Google Scholar 

  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5°C and 2°C warmer climates. Geophys Res Lett 44:7419–7428. https://doi.org/10.1002/2017GL074117

    Article  Google Scholar 

  • Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137:245–260. https://doi.org/10.1007/s10584-016-1665-6

    Article  Google Scholar 

  • Lionello P, Scarascia L (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Chang 18:1481–1493. https://doi.org/10.1007/s10113-018-1290-1

    Article  Google Scholar 

  • Lionello P, Abrantes F, Congedi L, Dulac F, Gacic M, Gomis D, Goodess C, Hoff H, Kutiel H, Luterbacher J, Planton S, Reale M, Schröder K, Struglia M V, Toreti A, Tsimplis M, Ulbrich U, Xoplaki E (2012) Introduction: Mediterranean climate: background information in Lionello P (Ed.) The Climate of the Mediterranean Region. From the Past to the Future, Amsterdam: Elsevier (NETHERLANDS), xxxv-xc, ISBN: 9780124160422, doi: https://doi.org/10.1016/B978-0-12-416042-2.00012-4

  • Llasat MC, Llasat-Botija M, Prat MA, Porcú F, Price C, Mugnai A, Lagouvardos K, Kotroni V, Katsanos D, Michaelides S, Yair Y, Savvidou K, Nicolaides K (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55. https://doi.org/10.5194/adgeo-23-47-2010

    Article  Google Scholar 

  • Mathbout S, Lopez-Bustins JA, Royé D, Martin-Vide J, Bech J, Rodrigo FS (2018) Observed changes in daily precipitation extremes at annual timescale over the eastern Mediterranean during 1961-2012. Pure Appl Geophys 175:3875–3890. https://doi.org/10.1007/s00024-017-1695-7

    Article  Google Scholar 

  • Miralles DG, Gentine P, Seneviratne SI, Teuling AJ (2019) Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann N Y Acad Sci 1436:19–35. https://doi.org/10.1111/nyas.13912

    Article  Google Scholar 

  • Nakićenović R, Alcamo NJ, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, 599pp

    Google Scholar 

  • Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H, Spinoni J, Vogt J, Feyen L (2018) Global changes in drought conditions under different levels of warming. Geophys Res Lett 4:3285–3296. https://doi.org/10.1002/2017GL076521

    Article  Google Scholar 

  • Paravantis J, Santamouris M, Cartalis C, Efthymiou C, Kontoulis N (2017) Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability 9:606. https://doi.org/10.3390/su9040606

    Article  Google Scholar 

  • Paz S, Negev M, Clermont A, Green MS (2016) Health aspects of climate change in cities with Mediterranean climate, and local adaptation plans. Int J Environ Res Public Health 13:438. https://doi.org/10.3390/ijerph13040438

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, Peguero G, Margalef O, Pla-Rabés S, Stefanescu C, Asensio D, Preece C, Liu L, Verger A, Barbeta A, Achotegui-Castells A, Gargallo-Garriga A, Sperlich D, Farré-Armengol G, Fernández-Martínez M, Liu D, Zhang C, Urbina I, Camino-Serrano M, Vives-Ingla M, Stocker BD, Balzarolo M, Guerrieri R, Peaucelle M, Marañón-Jiménez S, Bórnez-Mejías K, Mu Z, Descals A, Castellanos A, Terradas J (2017) Impacts of global change on Mediterranean forests and their services. Forests 8:463

    Article  Google Scholar 

  • Planton S, Lionello P, Artale V, Aznar R, Carrillo A, Colin J, Congedi L, Dubois C, Elizalde A, Gualdi S, Hertig E, Jacobeit J, Jordà G, Li L, Mariotti A, Piani C, Ruti P, Sanchez-Gomez E, Sannino G, Sevault F, Somot S, Tsimplis M (2012) The climate of the Mediterranean region in future climate. In: Lionello P (ed) The Climate of the Mediterranean Region. From the Past to the Future. Elsevier (NETHERLANDS), Projections, Amsterdam, pp 449–502. https://doi.org/10.1016/B978-0-12-416042-2.00008-2

    Chapter  Google Scholar 

  • Pumo D, Caracciolo D, Viola F, Noto LV (2016) Climate change effects on the hydrological regime of small non-perennial river basins. Sci Total Environ 542:76–92

    CAS  Article  Google Scholar 

  • Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell'Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Raznar R, Bastin S, Bartholy J, Beranger K, BeuvierJ B-CS, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde A, Gaertner M, Galan P, Gallardo C, Gualdi S, Goncalves M, JorbaO JG, Lhevede B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Macias-Moy D, Onol B, Rajkovic B, RamageK SF, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V, Nabat P (2015) Med-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97:1187–1208. https://doi.org/10.1175/BAMS-D-14-00176.1

    Article  Google Scholar 

  • Samuels R, Hochman A, Baharad A, Givati A, Levi Y, Yosef Y, Saaroni H, Ziv B, Harpaz T, Alpert P (2018) Evaluation and projection of extreme precipitation indices in the eastern Mediterranean based on CMIP5 multi-model ensemble. Int J Climatol 38:2280–2297. https://doi.org/10.1002/joc.5334

    Article  Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Zampieri M, Navarra A (2016) Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: results from CMIP5 models. Reg Environ Change 16:595–602 (2016). https://doi.org/10.1007/s10113-014-0712-y

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. https://doi.org/10.1002/jgrd.50203

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  • Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38:1718–1736. https://doi.org/10.1002/joc.5291

    Article  Google Scholar 

  • Spinoni J, Barbosa P, De Jager A, McCormick N, Naumann G, Vogt V, Magni J, Masante D, Mazzeschi D (2019) A new global database of meteorological drought events from 1951 to 2016. J Hydrol Reg Stud 22:100593. https://doi.org/10.1016/j.ejrh.2019.100593

    Article  Google Scholar 

  • Stagge JH, Kingston DG, Tallaksen LM, Hannah DM (2017) Observed drought indices show increasing divergence across Europe. Sci Rep 7(1):14045. https://doi.org/10.1038/s41598-017-14283-2

    CAS  Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tramblay Y, Somot S (2018) Future evolution of extreme precipitation in the Mediterranean. Clim Chang 151:289–302. https://doi.org/10.1007/s10584-018-2300-5

    Article  Google Scholar 

  • Turco M, von Hardenberg J, AghaKouchak A, Llasat MC, Provenzale A, Ricardo M, Trigo RM (2017) On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci Rep 7:81. https://doi.org/10.1038/s41598-017-00116-9

    CAS  Article  Google Scholar 

  • Ulbrich U, Lionello P, Belušic D, Jacobeit J, Knippertz P, Kuglitsch FG, Leckebusch GC, Luterbacher J, Maugeri M, Maheras P, Nissen KM, Pavan V, Pinto JG, Saaroni H, Seubert S, Toreti A, Xoplaki E, Ziv B (2012) Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes. In: Lionello P (ed) The Climate of the Mediterranean Region. From the Past to the Future. Elsevier (NETHERLANDS), Amsterdam, pp 301–346, ISBN:9780124160422. https://doi.org/10.1016/b978-0-12-416042-2.00005-7

    Chapter  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars AC, Berg LV, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PA, Jenne R, Mcnally AP, Mahfouf J, Morcrette J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012. https://doi.org/10.1256/qj.04.176

    Article  Google Scholar 

  • Vicente-Serrano SM, Lopez-Moreno JI, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Tejeda-Moran E, Revuelto J, Trigo R, Coelho F, Espejo F (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. https://doi.org/10.1088/1748-9326/9/4/044001

    Article  Google Scholar 

  • Vicente-Serrano SM, Van der Schrier G, Beguería S, Azorin-Molina C, Lopez-Moreno JI (2015) Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J Hydrol 526:42–54

    Article  Google Scholar 

  • Vicente-Serrano SM, Lopez-MorenoJI BS, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2019) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. https://doi.org/10.1088/1748-9326/9/4/044001

    Article  Google Scholar 

  • Wanders N, Wada Y, Van Lanen HAJ (2015) Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst Dynam 6:1–15. https://doi.org/10.5194/esd-6-1-2015

    Article  Google Scholar 

  • Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J (2016) Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg Environ Chang 16:1863–1876. https://doi.org/10.1007/s10113-014-0753-2

    Article  Google Scholar 

  • Zollo AL, Rillo V, Bucchignani E, Montesarchio M, Mercogliano P (2016) Extreme temperature and precipitation events over Italy: assessment of high-resolution simulations with COSMO-CLM and future scenarios. Int J Climatol 36:987–1004. https://doi.org/10.1002/joc.4401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Lionello.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Juan Ignacio Lopez Moreno

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lionello, P., Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg Environ Change 20, 31 (2020). https://doi.org/10.1007/s10113-020-01610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-020-01610-z

Keywords

  • Mediterranean region
  • Climate change
  • Extremes
  • Precipitation
  • Temperature
  • Hydrological cycle