Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Article
Google Scholar
Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539. https://doi.org/10.1890/11-1930.1
Article
Google Scholar
Ashraf U, Chaudhry MN, Ahmad SR, Ashraf I, Arslan M, Noor H, Jabbar M (2018) Impacts of climate change on Capparis spinosa L. based on ecological niche modeling. PeerJ 6:e5792. https://doi.org/10.7717/peerj.5792
Article
Google Scholar
Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor MD, Summer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde. 61:305–315. https://doi.org/10.3112/erdkunde.2007.04.01
Article
Google Scholar
Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper. Intergovernmental Panel on Climate Change, Geneva
Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54. https://doi.org/10.1644/1545-1542(2003)084<0037:POAEAI>2.0.CO;2
Article
Google Scholar
Beever EA, Wilkening JL, McIvor DE, Weber SS, Brussard PF (2008) American pikas (Ochotona princeps) in northwestern Nevada: a newly discovered population at a low-elevation site. West N Am Naturalist 68:8–14. https://doi.org/10.3398/1527-0904(2008)68[8:APOPIN]2.0.CO;2
Article
Google Scholar
Beever EA, Ray C, Mote PW, Wilkening JL (2010) Testing alternative models of climate-mediated extirpations. Ecol Appl 20:164–178. https://doi.org/10.1890/08-1011.1
Article
Google Scholar
Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Chang Biol 17:2054–2070. https://doi.org/10.1111/j.1365-2486.2010.02389.x
Article
Google Scholar
Bhattacharyya S (2013) Habitat ecology of Royle’s Pika (Ochotona roylei Ogilby) along altitudinal gradient with special reference to foraging behaviour in Western Himalaya, Uttarakhand. Ph.D. Dissertation, Saurashtra University, India
Bhattacharyya S, Ishtiaq F (2019) Noninvasive genetic sampling reveals population genetic structure in the Royle’s pika, Ochotona roylei in the western Himalaya. Ecol Evol 9:180–191. https://doi.org/10.1002/ece3.4707
Article
Google Scholar
Bhattacharyya S, Ray C (2015) Of plants and pikas: evidence for a climate-mediated decline in forage and cache quality. Plant Ecol Div 8:781–794. https://doi.org/10.1080/17550874.2015.1121520
Article
Google Scholar
Bhattacharyya S, Smith AT (2018) Species account: Ochotona roylei. In: Smith AT, Johnston C, Alves P, Hacklender K (eds) Lagomoprhs: Pikas, rabbits, and hares of the world of the world. John Hopkins University press, Baltimore, pp 75–76
Google Scholar
Bhattacharyya S, Adhikari B, Rawat G (2010) Abundance of Royle’s pika (Ochotona roylei) along an altitudinal gradient in Uttarakhand, Western Himalaya. Hystrix, Ital J Mammal 20:111–119. https://doi.org/10.4404/hystrix-20.2-4441
Article
Google Scholar
Bhattacharyya S, Adhikari BS, Rawat GS (2013) Forage selection by Royle’s pika (Ochotona roylei) in the western Himalaya, India. Zoology 116:300–306. https://doi.org/10.1016/j.zool.2013.05.003
Article
Google Scholar
Bhattacharyya S, Adhikari BS, Rawat GS (2014a) Influence of snow, food, and rock cover on Royle's pika abundance in western Himalaya. Arct Antarct Alp Res 46:558–567. https://doi.org/10.1657/1938-4246-46.3.558
Article
Google Scholar
Bhattacharyya S, Adhikari BS, Rawat GS (2014b) Influence of microclimate on the activity of Royle's pika in the western Himalaya, India. Zool Stud 53:73. https://doi.org/10.1186/s40555-014-0073-8
Article
Google Scholar
Bhattacharyya S, Dutta S, Adhikari BS, Rawat GS (2015) Presence of a small mammalian prey species in open habitat is dependent on refuge availability. Mammal Res 60:293–300. https://doi.org/10.1007/s13364-015-0234-0
Article
Google Scholar
Bhattacharyya S, Dawson D, Hipperson H, Ishtiaq F (2019) A diet rich in C3 plants reveals the sensitivity of an alpine mammal to climate change. Mol Ecol 28(2):250–265. https://doi.org/10.1111/mec.14842
CAS
Article
Google Scholar
Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529. https://doi.org/10.1111/j.1469-185X.1968.tb00968.x
Article
Google Scholar
Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not-so-splendid isolation: modeling climate-mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791. https://doi.org/10.1111/j.1600-0587.2011.07227.x
Article
Google Scholar
Chakraborty S, Bhattacharyya TP, Srinvasulu C, Venkataraman M, de Goonatilake WLDPTSA, Sechrest W, Daniel BA (2005) Ochotona roylei (Ogilby, 1839). In: Molur S, Srinivasulu C, Srinivasulu B, Walker S, Nameer PO , Ravikumar L (eds.), Status of South Asian Non-volant Small Mammals: Conservation Assessment and Management Plan (C.A.M.P.) Workshop Report. Coimbatore, India
Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103:791–802
Google Scholar
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. https://doi.org/10.1126/science.1206432
CAS
Article
Google Scholar
Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. Peer J 7:e6281. https://doi.org/10.7717/peerj.6281
Article
Google Scholar
Coelho MTP, Diniz-Filho JA, Rangel TF (2019) A parsimonious view of the parsimony principle in ecology and evolution. Ecography 42:968–976. https://doi.org/10.1111/ecog.04228
Article
Google Scholar
Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoSOne 6:e14508. https://doi.org/10.1371/journal.pone.0014508
CAS
Article
Google Scholar
Devaraju N, Bala G, Modak A (2015) Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proc Natl Acad Sci 112(11):3257–3262. https://doi.org/10.1073/pnas.1423439112
CAS
Article
Google Scholar
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Article
Google Scholar
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Article
Google Scholar
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086
Article
Google Scholar
Gilg O, Sittler B, Hanski I (2009) Climate change and cyclic predator–prey population dynamics in the high Arctic. Glob Chang Biol 15:2634–2652. https://doi.org/10.1111/j.1365-2486.2009.01927.x
Article
Google Scholar
Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Article
Google Scholar
Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. https://doi.org/10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2
Article
Google Scholar
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276
Article
Google Scholar
Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. https://doi.org/10.1016/S0169-5347(99)01764-4
CAS
Article
Google Scholar
Hutchinson GE (1965) The ecological theater and the evolutionary play. Yale University Press, New Haven, Connecticut
Google Scholar
Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. https://doi.org/10.1890/06-2128.1
Article
Google Scholar
Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. PNAS 97:1630–1633. https://doi.org/10.1073/pnas.97.4.1630
CAS
Article
Google Scholar
Kawamichi T (1968) Winter behaviour of the Himalayan Pika, Ochotona roylei. J Faculty of Sci Hokkaido Univ Ser VI Zool 16:582–594
Google Scholar
Koju NP, Chalise MK, Kyes RC (2014) Population and comparative behavior of Ochotona roylei and Ochotona macrotis in Gosaikunda area, Langtang National Park, Nepal. Ecoprint Int J Ecol 19:57–62. https://doi.org/10.3126/eco.v19i0.9854
Article
Google Scholar
Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. https://doi.org/10.1016/j.tree.2007.09.006
Article
Google Scholar
Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Cheyne SM (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379. https://doi.org/10.1111/ddi.12096
Article
Google Scholar
Kreuzer MP, Huntly NJ (2003) Habitat-specific demography: evidence for source-sink population structure in a mammal, the pika. Oecologia 134:343–349. https://doi.org/10.1007/s00442-002-1145-8
CAS
Article
Google Scholar
Kulkarni AV, Karyakarte Y (2014) Observed changes in Himalayan glaciers. Curr Sci 106:237–244 www.jstor.org/stable/24099804
Google Scholar
Leach K, Kelly R, Cameron A, Montgomery WI, Reid N (2015) Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order Lagomorpha. PLoS One 10:e0122267. https://doi.org/10.1371/journal.pone.0122267
CAS
Article
Google Scholar
Lissovsky AA (2014) Taxonomic revision of pikas Ochotona (Lagomorpha, Mammalia) at the species level. Mammalia 78:199–216. https://doi.org/10.1515/mammalia-2012-0134
Article
Google Scholar
MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
Article
Google Scholar
Marchand PJ (1996) The changing snowpack. In: Marchand P (ed) Life in the cold- an introduction to winter ecology. University Press of New England, Hanover, pp 11–39
Google Scholar
Millar CI, Westfall RD, Delany DL (2016) Thermal components of American pika habitat—how does a small lagomorph encounter climate? Arct Antarct Alp Res 48:327–343. https://doi.org/10.1657/AAAR0015-046
Article
Google Scholar
Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264. https://doi.org/10.1126/science.1163428
CAS
Article
Google Scholar
Morrison SF, Hik DS (2007) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J Anim Ecol 76:899–907. https://doi.org/10.1111/j.1365-2656.2007.01276.x
Article
Google Scholar
Mungi NA, Coops NC, Ramesh K, Rawat GS (2018) How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in Himalaya. Biol Invasions 20:1849–1863. https://doi.org/10.1007/s10530-018-1666-7
Article
Google Scholar
Oli MK, Taylor IR, Rogers ME (1994) Snow leopard Panthera uncia predation of livestock: an assessment of local perceptions in the Annapurna conservation area, Nepal. Biol Conserv 68:63–68. https://doi.org/10.1016/0006-3207(94)90547-9
Article
Google Scholar
Owen LA, Finkel RC, Caffee MW (2002) A note on the extent of glaciation throughout the Himalaya during the global last glacial maximum. Quat Sci Rev 21:147–157. https://doi.org/10.1016/S0277-3791(01)00104-4
Article
Google Scholar
Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Article
Google Scholar
Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401. https://doi.org/10.1016/j.biocon.2004.12.006
Article
Google Scholar
Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Article
Google Scholar
Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214. https://doi.org/10.1126/science.aai9214
CAS
Article
Google Scholar
Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Article
Google Scholar
Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Article
Google Scholar
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Article
Google Scholar
Pounds JA, Fogden MP, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. https://doi.org/10.1038/19297
CAS
Article
Google Scholar
Ray C, Beever E, Loarie S (2012) Retreat of the American pika: up the mountain or into the void? In: Brodie JF, Post E, Doak D (eds) Conserving wildlife populations in a changing climate. University of Chicago Press, Chicago, pp 245–270
Google Scholar
Ren J, Qin D, Kang S, Hou S, Pu J, Jing Z (2004) Glacier variations and climate warming and drying in the Central Himalayas. Chin Sci Bull 49:65–69. https://doi.org/10.1007/BF02901744
Article
Google Scholar
Ren YY, Ren GY, Sun XB, Shrestha AB, You QL, Zhan YJ, Rajbhandari R, Zhang PF, Wen KM (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv Clim Chang Res 8:148–156. https://doi.org/10.1016/j.accre.2017.08.001
Article
Google Scholar
Ribeiro V, Peterson AT, Werneck FP, Machado RB (2017) Ecological and historical views of the diversification of Geositta miners (Aves: Furnariidae: Sclerurinae). J Ornithol 158:15–23
Article
Google Scholar
Riley SJ (1999) Index that quantifies topographic heterogeneity. Int J Therm Sci 5:23–27
Google Scholar
Roberts TJ, Bernhard P (1977) The mammals of Pakistan. E. Benn, London
Google Scholar
Rodhouse TJ, Beever EA, Garrett LK, Irvine KM, Jeffress MR, Munts M, Ray C (2010) Distribution of American pikas in a low-elevation lava landscape: conservation implications from the range periphery. J Mammal 91:1287–1299. https://doi.org/10.1644/09-MAMM-A-334.1
Article
Google Scholar
Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western hemisphere. PNAS 109:8606–8611. https://doi.org/10.1073/pnas.1116791109
Article
Google Scholar
Schwalm D, Epps CW, Rodhouse TJ, Monahan WB, Castillo JA, Ray C, Jeffress MR (2016) Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Glob Chang Biol 22:1572–1584. https://doi.org/10.1111/gcb.13189
Article
Google Scholar
Segurado P, Araujo MB (2004) An evaluation of methods for modeling species distributions. J Biogeogr 31:1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x
Article
Google Scholar
Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741. https://doi.org/10.1371/journal.pone.0036741
CAS
Article
Google Scholar
Smith AT, Formozov NA, Hoffmann RS, Changlin Z, Erbajeva MA (1990) The Pikas. In: Chapman JA, Flux JC (eds) Rabbits, hares and pikas: status survey and conservation action plan gland. Switzerland, The World Conservation Union, pp 14–60
Google Scholar
Solari KA, Hadly EA (2018) Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). Integr zool 13:517–535. https://doi.org/10.1111/1749-4877.12332
Article
Google Scholar
Stewart SB, Choden K, Fedrigo M, Roxburgh SH, Keenan RJ, Nitschke CR (2017) The role of topography and the north Indian monsoon on mean monthly climate interpolation within the Himalayan Kingdom of Bhutan. Int J Climatol 37:897–909. https://doi.org/10.1002/joc.5045
Article
Google Scholar
Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250. https://doi.org/10.1073/pnas.0409902102
CAS
Article
Google Scholar
Uniyal VP (2001) Nanda Devi expedition-2001, a report. Wildlife Institute of India, Dehradun
Google Scholar
VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010
Article
Google Scholar
Walker DA, Halfpenny JC, Walker MD, Wessman CA (1993) Long-term studies of snow-vegetation interactions. BioSci 43:287–301 https://www.jstor.org/stable/1312061
Walker MD, Webber PJ, Arnold EH, Ebert-May D (1994) Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 75:393–408. https://doi.org/10.2307/1939543
Article
Google Scholar
Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x
Article
Google Scholar
Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic N, Shukla PR, La Rovere E, Yohe G (2009) Report of 2.6 versus 2.9 Watts/m2 RCPP evaluation panel. Integrated assessment modeling consortium
Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:–e2001104. https://doi.org/10.1371/journal.pbio.2001104
Wilkening JL, Ray C, Beever EA, Brussard PF (2011) Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quat Int 235:77–88. https://doi.org/10.1016/j.quaint.2010.05.004
Article
Google Scholar
Wilkening JL, Ray C, Varner J (2015) Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps). PLoS One 10:e0119327. https://doi.org/10.1371/journal.pone.0119327
CAS
Article
Google Scholar
Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang YUN, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x
CAS
Article
Google Scholar
Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2013) Presence-only modeling using MAXENT: when can we trust the inferences? Methods Ecol Evol 4:236–243. https://doi.org/10.1111/2041-210x.12004
Article
Google Scholar