Insights from present distribution of an alpine mammal Royle’s pika (Ochotona roylei) to predict future climate change impacts in the Himalaya

Abstract

Climate change poses a major threat to the survival of alpine mammals living in fragmented habitats with poor dispersal abilities. Among these important prey species, pikas are considered especially vulnerable to rising temperatures that would impede their surface activity and dispersal. We investigated how climatic regimes influence the niche of the Royle’s pika (Ochotona roylei), and which climatic drivers and change trajectories may threaten the species’ future sustenance, thereby prioritizing areas for future conservation of this species across its distribution range. We used Royle’s pika presence locations in the MaxEnt framework, along with biologically relevant climatic and topographical variables, to model the present (2010) and the future (2050, 2070) climatic niche under different future scenarios projected by CCSM4 climatic models. Subsequently, we estimated the climatic niche loss across the elevation gradient, longitudinal gradient, and both inside and outside protected areas for all countries within the species’ range. Niche suitability of the Royle’s pika was substantially determined by precipitation of the coldest quarter (~snow cover) and wettest quarter (~monsoon rainfall). As these parameters are known to be vulnerable to global climatic change, our projection revealed significant loss (102 km2/year) in the species niche availability across all future scenarios, particularly in non-protected low-elevation regions. By identifying areas where species survival may be threatened, we confirmed that the distribution of Royle’s pika, an important prey species, might be reduced by climate change. Our findings can aid in conservation planning strategies for this species and other alpine fauna and contribute to ongoing efforts to monitor change in the Himalaya.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  2. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539. https://doi.org/10.1890/11-1930.1

    Article  Google Scholar 

  3. Ashraf U, Chaudhry MN, Ahmad SR, Ashraf I, Arslan M, Noor H, Jabbar M (2018) Impacts of climate change on Capparis spinosa L. based on ecological niche modeling. PeerJ 6:e5792. https://doi.org/10.7717/peerj.5792

    Article  Google Scholar 

  4. Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor MD, Summer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde. 61:305–315. https://doi.org/10.3112/erdkunde.2007.04.01

    Article  Google Scholar 

  5. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper. Intergovernmental Panel on Climate Change, Geneva

  6. Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54. https://doi.org/10.1644/1545-1542(2003)084<0037:POAEAI>2.0.CO;2

    Article  Google Scholar 

  7. Beever EA, Wilkening JL, McIvor DE, Weber SS, Brussard PF (2008) American pikas (Ochotona princeps) in northwestern Nevada: a newly discovered population at a low-elevation site. West N Am Naturalist 68:8–14. https://doi.org/10.3398/1527-0904(2008)68[8:APOPIN]2.0.CO;2

    Article  Google Scholar 

  8. Beever EA, Ray C, Mote PW, Wilkening JL (2010) Testing alternative models of climate-mediated extirpations. Ecol Appl 20:164–178. https://doi.org/10.1890/08-1011.1

    Article  Google Scholar 

  9. Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Chang Biol 17:2054–2070. https://doi.org/10.1111/j.1365-2486.2010.02389.x

    Article  Google Scholar 

  10. Bhattacharyya S (2013) Habitat ecology of Royle’s Pika (Ochotona roylei Ogilby) along altitudinal gradient with special reference to foraging behaviour in Western Himalaya, Uttarakhand. Ph.D. Dissertation, Saurashtra University, India

  11. Bhattacharyya S, Ishtiaq F (2019) Noninvasive genetic sampling reveals population genetic structure in the Royle’s pika, Ochotona roylei in the western Himalaya. Ecol Evol 9:180–191. https://doi.org/10.1002/ece3.4707

    Article  Google Scholar 

  12. Bhattacharyya S, Ray C (2015) Of plants and pikas: evidence for a climate-mediated decline in forage and cache quality. Plant Ecol Div 8:781–794. https://doi.org/10.1080/17550874.2015.1121520

    Article  Google Scholar 

  13. Bhattacharyya S, Smith AT (2018) Species account: Ochotona roylei. In: Smith AT, Johnston C, Alves P, Hacklender K (eds) Lagomoprhs: Pikas, rabbits, and hares of the world of the world. John Hopkins University press, Baltimore, pp 75–76

    Google Scholar 

  14. Bhattacharyya S, Adhikari B, Rawat G (2010) Abundance of Royle’s pika (Ochotona roylei) along an altitudinal gradient in Uttarakhand, Western Himalaya. Hystrix, Ital J Mammal 20:111–119. https://doi.org/10.4404/hystrix-20.2-4441

    Article  Google Scholar 

  15. Bhattacharyya S, Adhikari BS, Rawat GS (2013) Forage selection by Royle’s pika (Ochotona roylei) in the western Himalaya, India. Zoology 116:300–306. https://doi.org/10.1016/j.zool.2013.05.003

    Article  Google Scholar 

  16. Bhattacharyya S, Adhikari BS, Rawat GS (2014a) Influence of snow, food, and rock cover on Royle's pika abundance in western Himalaya. Arct Antarct Alp Res 46:558–567. https://doi.org/10.1657/1938-4246-46.3.558

    Article  Google Scholar 

  17. Bhattacharyya S, Adhikari BS, Rawat GS (2014b) Influence of microclimate on the activity of Royle's pika in the western Himalaya, India. Zool Stud 53:73. https://doi.org/10.1186/s40555-014-0073-8

    Article  Google Scholar 

  18. Bhattacharyya S, Dutta S, Adhikari BS, Rawat GS (2015) Presence of a small mammalian prey species in open habitat is dependent on refuge availability. Mammal Res 60:293–300. https://doi.org/10.1007/s13364-015-0234-0

    Article  Google Scholar 

  19. Bhattacharyya S, Dawson D, Hipperson H, Ishtiaq F (2019) A diet rich in C3 plants reveals the sensitivity of an alpine mammal to climate change. Mol Ecol 28(2):250–265. https://doi.org/10.1111/mec.14842

    CAS  Article  Google Scholar 

  20. Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529. https://doi.org/10.1111/j.1469-185X.1968.tb00968.x

    Article  Google Scholar 

  21. Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not-so-splendid isolation: modeling climate-mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791. https://doi.org/10.1111/j.1600-0587.2011.07227.x

    Article  Google Scholar 

  22. Chakraborty S, Bhattacharyya TP, Srinvasulu C, Venkataraman M, de Goonatilake WLDPTSA, Sechrest W, Daniel BA (2005) Ochotona roylei (Ogilby, 1839). In: Molur S, Srinivasulu C, Srinivasulu B, Walker S, Nameer PO , Ravikumar L (eds.), Status of South Asian Non-volant Small Mammals: Conservation Assessment and Management Plan (C.A.M.P.) Workshop Report. Coimbatore, India

  23. Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103:791–802

    Google Scholar 

  24. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. https://doi.org/10.1126/science.1206432

    CAS  Article  Google Scholar 

  25. Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. Peer J 7:e6281. https://doi.org/10.7717/peerj.6281

    Article  Google Scholar 

  26. Coelho MTP, Diniz-Filho JA, Rangel TF (2019) A parsimonious view of the parsimony principle in ecology and evolution. Ecography 42:968–976. https://doi.org/10.1111/ecog.04228

    Article  Google Scholar 

  27. Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoSOne 6:e14508. https://doi.org/10.1371/journal.pone.0014508

    CAS  Article  Google Scholar 

  28. Devaraju N, Bala G, Modak A (2015) Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proc Natl Acad Sci 112(11):3257–3262. https://doi.org/10.1073/pnas.1423439112

    CAS  Article  Google Scholar 

  29. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  30. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  31. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  32. Gilg O, Sittler B, Hanski I (2009) Climate change and cyclic predator–prey population dynamics in the high Arctic. Glob Chang Biol 15:2634–2652. https://doi.org/10.1111/j.1365-2486.2009.01927.x

    Article  Google Scholar 

  33. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  34. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

  35. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. https://doi.org/10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2

    Article  Google Scholar 

  36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  37. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. https://doi.org/10.1016/S0169-5347(99)01764-4

    CAS  Article  Google Scholar 

  38. Hutchinson GE (1965) The ecological theater and the evolutionary play. Yale University Press, New Haven, Connecticut

    Google Scholar 

  39. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. https://doi.org/10.1890/06-2128.1

    Article  Google Scholar 

  40. Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. PNAS 97:1630–1633. https://doi.org/10.1073/pnas.97.4.1630

    CAS  Article  Google Scholar 

  41. Kawamichi T (1968) Winter behaviour of the Himalayan Pika, Ochotona roylei. J Faculty of Sci Hokkaido Univ Ser VI Zool 16:582–594

    Google Scholar 

  42. Koju NP, Chalise MK, Kyes RC (2014) Population and comparative behavior of Ochotona roylei and Ochotona macrotis in Gosaikunda area, Langtang National Park, Nepal. Ecoprint Int J Ecol 19:57–62. https://doi.org/10.3126/eco.v19i0.9854

    Article  Google Scholar 

  43. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. https://doi.org/10.1016/j.tree.2007.09.006

    Article  Google Scholar 

  44. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Cheyne SM (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379. https://doi.org/10.1111/ddi.12096

    Article  Google Scholar 

  45. Kreuzer MP, Huntly NJ (2003) Habitat-specific demography: evidence for source-sink population structure in a mammal, the pika. Oecologia 134:343–349. https://doi.org/10.1007/s00442-002-1145-8

    CAS  Article  Google Scholar 

  46. Kulkarni AV, Karyakarte Y (2014) Observed changes in Himalayan glaciers. Curr Sci 106:237–244 www.jstor.org/stable/24099804

    Google Scholar 

  47. Leach K, Kelly R, Cameron A, Montgomery WI, Reid N (2015) Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order Lagomorpha. PLoS One 10:e0122267. https://doi.org/10.1371/journal.pone.0122267

    CAS  Article  Google Scholar 

  48. Lissovsky AA (2014) Taxonomic revision of pikas Ochotona (Lagomorpha, Mammalia) at the species level. Mammalia 78:199–216. https://doi.org/10.1515/mammalia-2012-0134

    Article  Google Scholar 

  49. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

    Article  Google Scholar 

  50. Marchand PJ (1996) The changing snowpack. In: Marchand P (ed) Life in the cold- an introduction to winter ecology. University Press of New England, Hanover, pp 11–39

    Google Scholar 

  51. Millar CI, Westfall RD, Delany DL (2016) Thermal components of American pika habitat—how does a small lagomorph encounter climate? Arct Antarct Alp Res 48:327–343. https://doi.org/10.1657/AAAR0015-046

    Article  Google Scholar 

  52. Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264. https://doi.org/10.1126/science.1163428

    CAS  Article  Google Scholar 

  53. Morrison SF, Hik DS (2007) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J Anim Ecol 76:899–907. https://doi.org/10.1111/j.1365-2656.2007.01276.x

    Article  Google Scholar 

  54. Mungi NA, Coops NC, Ramesh K, Rawat GS (2018) How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in Himalaya. Biol Invasions 20:1849–1863. https://doi.org/10.1007/s10530-018-1666-7

    Article  Google Scholar 

  55. Oli MK, Taylor IR, Rogers ME (1994) Snow leopard Panthera uncia predation of livestock: an assessment of local perceptions in the Annapurna conservation area, Nepal. Biol Conserv 68:63–68. https://doi.org/10.1016/0006-3207(94)90547-9

    Article  Google Scholar 

  56. Owen LA, Finkel RC, Caffee MW (2002) A note on the extent of glaciation throughout the Himalaya during the global last glacial maximum. Quat Sci Rev 21:147–157. https://doi.org/10.1016/S0277-3791(01)00104-4

    Article  Google Scholar 

  57. Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011

    Article  Google Scholar 

  58. Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401. https://doi.org/10.1016/j.biocon.2004.12.006

    Article  Google Scholar 

  59. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  60. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214. https://doi.org/10.1126/science.aai9214

    CAS  Article  Google Scholar 

  61. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  62. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  63. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  64. Pounds JA, Fogden MP, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. https://doi.org/10.1038/19297

    CAS  Article  Google Scholar 

  65. Ray C, Beever E, Loarie S (2012) Retreat of the American pika: up the mountain or into the void? In: Brodie JF, Post E, Doak D (eds) Conserving wildlife populations in a changing climate. University of Chicago Press, Chicago, pp 245–270

    Google Scholar 

  66. Ren J, Qin D, Kang S, Hou S, Pu J, Jing Z (2004) Glacier variations and climate warming and drying in the Central Himalayas. Chin Sci Bull 49:65–69. https://doi.org/10.1007/BF02901744

    Article  Google Scholar 

  67. Ren YY, Ren GY, Sun XB, Shrestha AB, You QL, Zhan YJ, Rajbhandari R, Zhang PF, Wen KM (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv Clim Chang Res 8:148–156. https://doi.org/10.1016/j.accre.2017.08.001

    Article  Google Scholar 

  68. Ribeiro V, Peterson AT, Werneck FP, Machado RB (2017) Ecological and historical views of the diversification of Geositta miners (Aves: Furnariidae: Sclerurinae). J Ornithol 158:15–23

    Article  Google Scholar 

  69. Riley SJ (1999) Index that quantifies topographic heterogeneity. Int J Therm Sci 5:23–27

    Google Scholar 

  70. Roberts TJ, Bernhard P (1977) The mammals of Pakistan. E. Benn, London

    Google Scholar 

  71. Rodhouse TJ, Beever EA, Garrett LK, Irvine KM, Jeffress MR, Munts M, Ray C (2010) Distribution of American pikas in a low-elevation lava landscape: conservation implications from the range periphery. J Mammal 91:1287–1299. https://doi.org/10.1644/09-MAMM-A-334.1

    Article  Google Scholar 

  72. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western hemisphere. PNAS 109:8606–8611. https://doi.org/10.1073/pnas.1116791109

    Article  Google Scholar 

  73. Schwalm D, Epps CW, Rodhouse TJ, Monahan WB, Castillo JA, Ray C, Jeffress MR (2016) Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Glob Chang Biol 22:1572–1584. https://doi.org/10.1111/gcb.13189

    Article  Google Scholar 

  74. Segurado P, Araujo MB (2004) An evaluation of methods for modeling species distributions. J Biogeogr 31:1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x

    Article  Google Scholar 

  75. Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741. https://doi.org/10.1371/journal.pone.0036741

    CAS  Article  Google Scholar 

  76. Smith AT, Formozov NA, Hoffmann RS, Changlin Z, Erbajeva MA (1990) The Pikas. In: Chapman JA, Flux JC (eds) Rabbits, hares and pikas: status survey and conservation action plan gland. Switzerland, The World Conservation Union, pp 14–60

    Google Scholar 

  77. Solari KA, Hadly EA (2018) Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). Integr zool 13:517–535. https://doi.org/10.1111/1749-4877.12332

    Article  Google Scholar 

  78. Stewart SB, Choden K, Fedrigo M, Roxburgh SH, Keenan RJ, Nitschke CR (2017) The role of topography and the north Indian monsoon on mean monthly climate interpolation within the Himalayan Kingdom of Bhutan. Int J Climatol 37:897–909. https://doi.org/10.1002/joc.5045

    Article  Google Scholar 

  79. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250. https://doi.org/10.1073/pnas.0409902102

    CAS  Article  Google Scholar 

  80. Uniyal VP (2001) Nanda Devi expedition-2001, a report. Wildlife Institute of India, Dehradun

    Google Scholar 

  81. VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010

    Article  Google Scholar 

  82. Walker DA, Halfpenny JC, Walker MD, Wessman CA (1993) Long-term studies of snow-vegetation interactions. BioSci 43:287–301 https://www.jstor.org/stable/1312061

  83. Walker MD, Webber PJ, Arnold EH, Ebert-May D (1994) Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 75:393–408. https://doi.org/10.2307/1939543

    Article  Google Scholar 

  84. Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x

    Article  Google Scholar 

  85. Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic N, Shukla PR, La Rovere E, Yohe G (2009) Report of 2.6 versus 2.9 Watts/m2 RCPP evaluation panel. Integrated assessment modeling consortium

  86. Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:–e2001104. https://doi.org/10.1371/journal.pbio.2001104

  87. Wilkening JL, Ray C, Beever EA, Brussard PF (2011) Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quat Int 235:77–88. https://doi.org/10.1016/j.quaint.2010.05.004

    Article  Google Scholar 

  88. Wilkening JL, Ray C, Varner J (2015) Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps). PLoS One 10:e0119327. https://doi.org/10.1371/journal.pone.0119327

    CAS  Article  Google Scholar 

  89. Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang YUN, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x

    CAS  Article  Google Scholar 

  90. Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2013) Presence-only modeling using MAXENT: when can we trust the inferences? Methods Ecol Evol 4:236–243. https://doi.org/10.1111/2041-210x.12004

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are also given to Dr. Farah Ishtiaq for helping to obtain field work permission in 2014 and 2015, Mr. Pankaj Singh Bisht and Mr. Gabbar Singh Bisth for helping with fieldwork, Dr. Ishwari Dutt Rai and Ms. Monideepa Mitra for providing additional species occurrence locations, Dr. Monika Kaushik for helping with data analysis, Dr. Nicholas Coop and two anonymous reviewers for comments on the manuscript.

Funding

The Director of the Wildlife Institute of India, Dehradun, the Uttarakhand State Forest Department, the Council for Scientific and Industrial Research (CSIR), DBT Research Associateship program, the Indian Institute of Science, Bangalore, and the Pro-Natura Foundation, Japan provided the funds, necessary facilities, and support which allowed us to smoothly conduct this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabuj Bhattacharyya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor: Wolfgang Cramer

Electronic supplementary material

ESM 1

(DOCX 16702 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Mungi, N.A., Kawamichi, T. et al. Insights from present distribution of an alpine mammal Royle’s pika (Ochotona roylei) to predict future climate change impacts in the Himalaya. Reg Environ Change 19, 2423–2435 (2019). https://doi.org/10.1007/s10113-019-01556-x

Download citation

Keywords

  • Alpine
  • Climatic niche
  • Ecological niche modeling
  • Himalaya
  • MaxEnt
  • Pika