Evolution of Mediterranean extreme dry spells during the wet season under climate change

Abstract

Dry spells are natural hazards which have strong impacts on the environment and on many socioeconomic sectors. Their evolution in the Mediterranean Basin is a major issue because it is one of the most extreme hot spots of climate change world-wide. Very long dry spells are defined as climatic events characterized by their location, spatial extent, duration, and recurrence. This study investigates the evolution of these events during the wet season and for regional future climate projections of the Mediterranean and European Coordinated Downscaling Experiment initiatives (called Med-CORDEX and EURO-CORDEX). All simulations were performed with different regional climate models and various climate change scenarios. Main results are (i) an increase in the number of very long dry spells (between + 3 and + 31 events) and (ii) an increase of their mean duration and spatial extent. This increase in the severity of very long dry spells may have strong socioeconomic impacts in particular for the most vulnerable areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Barcikowska MJ, Kapnick SB, Feser F (2018) Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate. Clim Dyn 50:2039–2059. https://doi.org/10.1007/s00382-017-3735-5

    Google Scholar 

  2. Bastin S, Drobinski P, Chiriaco M, Bock O, Roehrig R, Gallardo C, Conte D, Dominguez-Alonso M, Li L, Lionello P, Parracho AC (2018) Impact of humidity biases on light precipitation occurrence: observations versus simulations. Atmospheric Chemistry and Physics Discussion, in review. https://doi.org/10.5194/acp-2018-624

  3. Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability during 1961-2000: Focus on the Eastern Mediterranean Transient. J Geophys Res 115:C08017. https://doi.org/10.1029/2009JC005950

    Google Scholar 

  4. Born K, Fink AH, Paeth H (2008) Dry and wet periods in the northwestern Maghreb for present day and future climate conditions. Meteorol Z 17(5):533–551. https://doi.org/10.1127/0941-2948/2008/0313

    Google Scholar 

  5. Brunet M, Gilabert A, Jones PD (2014) A historical surface climate dataset from station observations in Mediterranean North Africa and Middle East areas. Geosci Data J 1:121–128. https://doi.org/10.5281/zenodo.7531

    Google Scholar 

  6. Caloiero T, Coscarelli R, Ferrari E, Sirangelo B (2015) Analysis of Dry Spells in Southern Italy (Calabria). Water 14:3009–3023. https://doi.org/10.3390/w7063009

    Google Scholar 

  7. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus 62A:591–604. https://doi.org/10.1111/j.1600-0870.2010.00467

    Google Scholar 

  8. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) Hymex, a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. https://doi.org/10.1175/BAMS-D-12-00242.1

    Google Scholar 

  9. Drobinski P, Da Silva N, Panthou G, Bastin S, Muller C, Ahrens B, Borga M, Conte D, Fosser G, Giorgi F, Güttler I, Kotroni V, Li L, Morin E, Onol B, Quintana-Segui P, Romera R, Torma CZ (2018) Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios. Climate Dynamics. https://doi.org/10.1007/s00382-016-3083-x

  10. Drumond A, Gimeno L, Nieto R, Trigo R, Vicente-Serrano SM (2017) Drought episodes in the climatological sinks of the Mediterranean moisture source: The role of moisture transport. Glob Planet Chang 151:4–14. https://doi.org/10.1016/j.gloplacha.2016.12.004

    Google Scholar 

  11. Dubrovsky M, Hayes M, Duce P, Trnka M, Svoboda M, Zara P (2014) Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Region Environ Change 14:1907–1919. https://doi.org/10.1007/s10113-013-0562-z

    Google Scholar 

  12. Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M, Borga M, Calvet JC (2013) Precipitation and temperature space-time variability and extremes in the Mediterranean region: Evaluation of dynamical and statistical downscaling methods. Clim Dyn 40:2687–2705. https://doi.org/10.1007/s00382-012-1558-y

    Google Scholar 

  13. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. https://doi.org/10.1029/2005GL024954

    Google Scholar 

  14. Gouveia CM, Trigo RM, Beguería S, Vicente-Serrano SM (2017) Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Glob Planet Chang 151:15–27. https://doi.org/10.1016/j.gloplacha.2016.06.011

    Google Scholar 

  15. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. https://doi.org/10.1175/2009bams2607.1

    Google Scholar 

  16. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. https://doi.org/10.1007/s00382-010-0810-6

    Google Scholar 

  17. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res 113:D20119. https://doi.org/10.1029/2008JD010201

    Google Scholar 

  18. Hertig E, Tramblay Y (2017) Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob Planet Chang 151:36–48. https://doi.org/10.1016/j.gloplacha.2016.10.015

    Google Scholar 

  19. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. https://doi.org/10.1007/s00382-006-0158-0

    Google Scholar 

  20. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  21. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorog Atmos Phys 63:119–129. https://doi.org/10.1007/BF01025368

    Google Scholar 

  22. Jacob D, Petersen J, Eggert B, Alias A, Christensen O, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. https://doi.org/10.1007/s10113-013-0499-2

    Google Scholar 

  23. Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191. https://doi.org/10.1002/joc.1779

    Google Scholar 

  24. Lavaysse C, Vrac M, Drobinski P, Lengaigne M, Vischel T (2012) Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario. Nat Hazards Earth Syst Sci 12:651–670. https://doi.org/10.5194/nhess-12-651-2012

    Google Scholar 

  25. Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Chang 114:667–687. https://doi.org/10.1007/s10584-012-0418-4

    CAS  Google Scholar 

  26. Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009) Long-term transpiration change with rainfall decline in a Mediterranea Quercus ilex forest. Glob Chang Biol 15:2163–2175. https://doi.org/10.1111/j.1365-2486.2009.01852.x

    Google Scholar 

  27. López-Franca N, Sánchez E, Romera R, Domíngues M (2013) Dry spells analysis over the Mediterranean basin for present climate and climate change conditions using ENSEMBLES regional climate models. Fisica Tierra 25:123–136. https://doi.org/10.5209/rev_FITE.2013.v25.43439

    Google Scholar 

  28. López-Franca N, Sánchez E, Losada T, Domínguez M, Romera R, Gaertner MA (2015) Markovian characteristics of dry spells over the Iberian Peninsula under present and future conditions using ESCENA ensemble of regional climate models. Clim Dyn 45:661–677. https://doi.org/10.1007/s00382-014-2280-8

    Google Scholar 

  29. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks T (2010) The next Generation of Scenarios for Climate Change Research and Assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    CAS  Google Scholar 

  30. Pascale S, Lucarini V, Feng X, Porporato A, ul Hasson S (2016) Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim Dyn 46:1331–1350. https://doi.org/10.1007/s00382-015-2648-4

    Google Scholar 

  31. Paxian A, Hertig E, Seubert S, Vogt G, Jacobeit J, Paeth H (2015) Present-day and future Mediterranean precipitation extremes assessed by different statistical approaches. Clim Dyn 44:845–860. https://doi.org/10.1007/s00382-014-2428-6

    Google Scholar 

  32. Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364. https://doi.org/10.1038/srep04364

    CAS  Google Scholar 

  33. Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2017) Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Nat Sci Rep 7:10783. https://doi.org/10.1038/s41598-017-11285-y

    Google Scholar 

  34. Rajczak J, Schär C (2017) Projections of future precipitation extremes over Europe: A multimodel Assessment of Climate Simulations. J Geophys Res: Atmosp 122:10773–10800. https://doi.org/10.1002/2017JD027176

    Google Scholar 

  35. Raymond F, Ullmann A, Camberlin P, Drobinski P, Chateau Smith C (2016) Extreme dry spell detection and climatology over the Mediterranean Basin during the wet season. Geophys Res Lett 43:7196–7204. https://doi.org/10.1002/2016GL069758

    Google Scholar 

  36. Raymond F, Ullmann A, Camberlin P, Oueslati B, Drobinski P (2018a) Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin. Clim Dyn 50:4437–4453. https://doi.org/10.1007/s00382-017-3884-6

    Google Scholar 

  37. Raymond F, Drobinski P, Ullmann A, Camberlin P (2018b) Extreme dry spells over the Mediterranean Basin during the wet season: assessment of hymex/med-CORDEX regional climate simulations (1979-2009). Int J Climatol 38:3090–3105. https://doi.org/10.1002/joc.5487

    Google Scholar 

  38. Raymond F, Ullmann A, Camberlin P (2018c) Très longs épisodes secs hivernaux dans le bassin méditerranéen: variabilité spatio-temporelle et impact sur la production céréalière en Espagne. Cybergéo : European journal of Geography [En Ligne], Environnement, nature, paysage, document 858, mis en ligne le 14 juin 2018. https://doi.org/10.4000/cybergeo.29156

  39. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348. https://doi.org/10.1127/0941-2948/2008/0309

    Google Scholar 

  40. Rodriguez-Puebla C, Ayuso SM, Frias MD, Garcia-Casado LA (2007) Effects of climate variation on winter cereal production in Spain. Clim Res 34:223–232. https://doi.org/10.3354/cr00700

    Google Scholar 

  41. Rummukainen M, Räisänen J, Bringfelt B, Ullerstig A, Omstedt A, Willén U, Hansson U, Jones C (2001) A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359. https://doi.org/10.1007/s003820000109

    Google Scholar 

  42. Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Raznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloche S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde A, Gaertner M, Galan P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jorda G, Lheveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Macias-Moy D, Onol B, Rajkovic B, Ramage K, Sevault F, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V (2016) MED-CORDEX Initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97:1187–1208. https://doi.org/10.1175/BAMS-D-14-00176.1

    Google Scholar 

  43. Sanford T, Frumhoff PC, Luers A, Gulledge J (2014) The climate policy narrative for a dangerously warming world. Nat Clim Chang 4:164–166. https://doi.org/10.1038/nclimate2148

    Google Scholar 

  44. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J (2008) A description of the advanced research wrf version 3. NCAR Technical Note NCAR/TN-475+STR, NCAR, Boulder. https://doi.org/10.5065/D68S4MVH

  45. Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. https://doi.org/10.5194/nhess-11-33-2011

    Google Scholar 

  46. Stéfanon M, D’Andrea F, Drobinski P (2012) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7:14–23. https://doi.org/10.1088/1748-9326/7/1/014023

    Google Scholar 

  47. Stéfanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. https://doi.org/10.1007/s00382-013-1794-9

    Google Scholar 

  48. Tramblay Y, Hertig E (2018) Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation. Atmos Res 202:40–48. https://doi.org/10.1016/j.atmosres.2017.11.015

    Google Scholar 

  49. Vaittinada Ayar P, Vrac M, Bastin S, Carreau J, Déqué M, Gallardo C (2016) Intercomparison of statistical and dynamical downscaling models under the EUROS- and MED-CORDEX initiative framework: present climate evaluations. Clim Dyn 46:1301–1329. https://doi.org/10.1007/s00382-015-2647-5

    Google Scholar 

  50. Van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk B, Lenderink G, Siebesma AP (2008) Technical Report 302: The KNMI regional atmospheric climate model RACMO version 2.1. Royal Netherlands Meteorological Institute, De Bilt

  51. Vicente-Serrano SM, Lopez-Moreno JI, Lorenzo-Lacruz J, El Kenawy A, Azorin-Molina C, Moran-Tejeda E, Pasho E, Zabalza J, Begueria S, Angulo-Martinez M (2011) The NAO Impact on Droughts in the Mediterranean Region. In: Vicente-Serrano S (ed) Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region. Advances in Global Change Research. https://doi.org/10.1007/978-94-007-1372-7_3, vol 46. Springer, Dordrecht

  52. Vrac M (2018) Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction. Hydrol Earth Syst Sci 22(6):3175–3196. https://doi.org/10.5194/hess-22-3175-2018

    Google Scholar 

  53. Von Trentini F, Leduc M, Ludwig R (2019) Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble. Climate Dynamics, first on line published. https://doi.org/10.1007/s00382-019-04755-8

  54. Zakhem BA, Kattaa B (2016) Investigation of hydrological drought using Cumulative Standardized Precipitation Index (SPI 30) in the eastern Mediterranean region (Damascus, Syria). J Earth Syst Sci 125(5):969–984. https://doi.org/10.1007/s12040-016-0703-0

    Google Scholar 

  55. Zappa G, Hawcroft MK, Shaffrey L, Black E, Brayshaw DJ (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45:1727–1738. https://doi.org/10.1002/2013GL058480

    Google Scholar 

Download references

Acknowledgments

This work is a contribution to the HYdrological cycle in The Mediterranean EXperiment (HyMeX) program (especially to the HyMeX drought team), through INSU/MISTRALS support, the Mediterranean region COordinated Regional climate Downscaling EXperiment (Med-CORDEX) program and the European region COordinated Regional climate Downscaling EXperiment (Euro-CORDEX). The authors are grateful to Marc Stéfanon for providing his heatwave identification processing software, which has been adapted to the context of droughts. The authors acknowledge the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrns), the Med-CORDEX database team at ENEA, and the Euro-CORDEX database teams for their help in accessing the data. It is also a contribution to the HyMeX regional hydroclimate project of the GEWEX program of the World Climate Research Program (WCRP) (GEWEX Hydroclimate Panel).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Florian Raymond or Albin Ullmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Climate change impacts in the Mediterranean

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.21 MB)

(PDF 1.46 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raymond, F., Ullmann, A., Tramblay, Y. et al. Evolution of Mediterranean extreme dry spells during the wet season under climate change. Reg Environ Change 19, 2339–2351 (2019). https://doi.org/10.1007/s10113-019-01526-3

Download citation

Keywords

  • Very long dry spells
  • Mediterranean Basin
  • Climate warming
  • HyMeX
  • Med-CORDEX
  • Euro-CORDEX