Skip to main content

Advertisement

Log in

Interannual lake fluctuations in the Argentine Puna: relationships with its associated peatlands and climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

High elevation ecosystems are likely more sensitive to climate change. But, due to paucity of instrumental records, such effects are poorly studied, particularly in mountains outside Europe and North America. Here, we quantified water body area fluctuations for the last 32 years in 15 lakes spread over an area of 14.3 million ha in the Argentine Puna, through the classification of Landsat images; and we quantified peatlands NDVI (a proxy of vegetation productivity) from MODIS images. We evaluated the pairwise similarity between lakes interannual fluctuations and their relationship with climate models (TRMM 3B43 v7; CRU TS 4.10) and potential controls (ENSO index); and the correlations between water body area and the NDVI variation of its associated peatlands. Lakes were grouped in two clusters defined by their synchronic water body area variability and these clusters define two main geographic zones: NE and SW. Consistent with previous observations of an overall aridization trend, water body area generally decreased but showed large variability among lakes. Peatlands productivity was more correlated with lake variability than with modeled precipitation, and lake water body area was weakly related to indices of ENSO, providing an additional tool to relate local climate with continental and global climate models. The analysis shows that lake behavior is highly variable spatially and temporally, and that satellite-based monitoring is a valuable tool for assessing ecological conditions of wetlands in the region, characterized by the lack of climatic instrumental records; and to explore the vulnerability of wetlands to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aliaga CB, Callisaya JF (2012) Estudio espacial multitemporal de variaciones en superficie observadas a través de imágenes satelitales Landsat en una región del Parque Nacional Sajama Bolivia. Report. Project: Adaptación al cambio climático en comunidades Andinas bolivianas que dependen de glaciales tropicales. La Paz, Bolivia: Agua Sustentable

  • Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond B Biol Sci 268(1473):1315–1321. https://doi.org/10.1098/rspb.2001.1665

    Article  CAS  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Diaz HF (eds.) Climate variability and change in high elevation regions: past, present & future. Advances in global change research, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1252-7_2

    Google Scholar 

  • Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 162(8–9):1587–1606. https://doi.org/10.1007/s00024-005-2684-9

    Article  Google Scholar 

  • Beniston M, Diaz H, Bradley R (1997) Climatic change at high elevation sites. An overview. Clim Chang 36(3–4):233–251. https://doi.org/10.1023/A:1005380714349

    Article  Google Scholar 

  • Boucher E, Guiot J, Chapron EA (2011) Millennial multi-proxy reconstruction of summer PDSI for southern South America. Clim Past 7:957–974. https://doi.org/10.5194/cp-7-957-2011

    Article  Google Scholar 

  • Brakenridge GR (1978) Evidence for a cold, dry full-glacial climate in the American Southwest. Quat Res 9(1):22–40. https://doi.org/10.1016/0033-5894(78)90080-7

    Article  Google Scholar 

  • Buytaert W, Vuille M, Dewulf A, Urrutia R, Karmalkar AV, Celleri R (2010) Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol Earth Syst Sci 14:1247–1258. https://doi.org/10.5194/hess-14-1247-2010

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas argentinas. Editorial ACME, Buenos Aires, Argentina

    Google Scholar 

  • Carilla J, Grau HR, Paolini L, Morales M (2013) Lake fluctuations, plant productivity, and long-term variability in high-elevation tropical Andean ecosystems. Arct Antarct Alp Res 45(2):179–189. https://doi.org/10.1657/1938-4246-45.2.179

    Article  Google Scholar 

  • Caziani S, Derlindati E (1999) Humedales altoandinos del noroeste de Argentina. Su contribución a la biodiversidad regional. In: Malvárez I (ed) Tópicos Sobre Humedales Subtropicales y Templados de Sudamérica. Montevideo, Uruguay. ORCYT, pp 1–13

    Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric Calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI. Remote Sens Environ 113(5):893–903. https://doi.org/10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  • Currey DR, Sack D (2009) Hemiarid lake basins: hydrographic patterns. In Parsons AJ, Abrahams AD (eds.) Geomorphology of desert environments, Springer: Dordrecht, Netherlands, pp. 489–514. https://doi.org/10.1007/978-1-4020-5719-9_16

    Chapter  Google Scholar 

  • Dong S, Peng F, You Q, Guo J, Xue X (2018) Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Reg Environ Chang 18(2):477–487. https://doi.org/10.1007/s10113-017-1211-8

    Article  Google Scholar 

  • Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino M, Aguilar OM, Vázquez MP, Polerecky L (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8(1):e53497. https://doi.org/10.1371/journal.pone.0053497

    Article  CAS  Google Scholar 

  • Francou B, Vuille M, Wagnon P, Mendoza J, Sicart JM (2003) Tropical climate change recorded by a glacier in the Central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J Geophy Res 108(D5). https://doi.org/10.1029/2002JD002959

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14(12):2779–2789. https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2

    Article  Google Scholar 

  • Glantz MH, Katz RW, Nicholls N (1991) Teleconnections linking worldwide climate anomalies: scientific basis and societal impact, vol 535. Cambridge University Press, Cambridge

    Google Scholar 

  • Grasso DN (1996) Hydrology of modern and late Holocene lakes, Death Valley, California. Water-resources investigations report 95-4237, USGS Numbered Series. U.S. Dept. of the Interior, U.S. Geological Survey: Information Services, Denver, Colorado, United States https://doi.org/10.3133/wri954237

  • Hanley DE, Bourassa MA, O'Brien JJ, Smith SR, Spade ERA (2003) Quantitative evaluation of ENSO indices. J Clim 16(8):1249–1258. https://doi.org/10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34(3):623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciação YMT, Baez J, Vincent LA, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature. J Clim 19(8):1490–1512. https://doi.org/10.1175/JCLI3695.1

    Article  Google Scholar 

  • Hsu CW, Chang CC, Lin CJ (2007) A practical guide to support vector classification. National Taiwan University

  • Izquierdo AE, Aragón R, Navarro CJ, Casagranda E (2018) Humedales de la Puna: principales proveedores de servicios ecosistémicos de la región. In HR Grau, MJ Babot, A Izquierdo y A Grau (eds.) La Puna argentina: naturaleza y cultura. Serie de Conservación de la Naturaleza Vol. 24, pp 96–111

  • Izquierdo AE, Foguet J, Grau HR (2015) Mapping and spatial characterization of argentine high Andean peatbogs. Wetl Ecol and Manag 23(5):963–976. https://doi.org/10.1007/s11273-015-9433-3

    Article  Google Scholar 

  • Izquierdo AE, Foguet J, Grau HR (2016) Hidroecosistemas de la Puna y Altos Andes de Argentina. Acta Geológica Lilloana 28(2):390–402

    Google Scholar 

  • Jobbágy EG, Nosetto MD, Villagra PE, Jackson RB (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Eco Appl 21(3):678–694. https://doi.org/10.1890/09-1427.1

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40(8):1824–1832. https://doi.org/10.1109/TGRS.2002.802519

    Article  Google Scholar 

  • Kayastha N, Thomas V, Galbraith J, Banskota A (2012) Monitoring wetland change using inter-annual Landsat time-series data. Wetlands. 32(6):1149–1162. https://doi.org/10.1007/s13157-012-0345-1

    Article  Google Scholar 

  • Kusler J, Mitsch W, Larson J (1994) Humedales. Investigación y Ciencia 210:6–13

    Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/southern oscillation response to global warming. PNAS. 106(49):20578–20583. https://doi.org/10.1073/pnas.0710860105

    Article  Google Scholar 

  • Lee KS, Kim TH, Yun YS, Shin SM (2001) Spectral characteristics of shallow turbid water near the shoreline on inter-tidal flat. Korean J Remote Sens 17(2):131–139

    Google Scholar 

  • Liebmann B, Fu R, Camargo S, Seth A, Marengo J, Carvalho L, Allured D, Vera C (2007) Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J Climate 20(10):2037–2050. https://doi.org/10.1175/JCLI4122.1

    Article  Google Scholar 

  • Lupo L, Morales M, Yacobaccio HD, Maldonado A, Grossjean M (2007) Cambios ambientales en la Puna jujeña durante los últimos 1200 años: explorando su impacto en la economía pastoril. In UNJu (eds.) Actas XVI Congreso Nacional de Arqueología Argentina Tomo III, San Salvador de Jujuy, Argentina, pp. 151–156

  • Mantero P, Moser G, Serpico SB (2005) Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans Geosci Remote Sens 43(3):559–570. https://doi.org/10.1109/TGRS.2004.842022

    Article  Google Scholar 

  • Mazzarella A, Giuliacci A, Scafetta N (2013) Quantifying the multivariate ENSO index (MEI) coupling to CO2 concentration and to the length of day variations. Theor Appl Climatol 111(3–4):601–607. https://doi.org/10.1007/s00704-012-0696-9

    Article  CAS  Google Scholar 

  • Meneses R, Loza Herrera S, Domic A, Palabral-Aguilera A, Zeballos G, Ortuño T (2015) Bofedales altoandinos. In Moya M, I Meneses R, Sarmiento J (eds.) Historia Natural de un Valle en Los Andes: La Paz, Segunda edición en español. Museo Nacional de Historia Natural: La Paz, Bolivia, pp. 191-205

  • Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7:13603. https://doi.org/10.1038/ncomms13603

    Article  CAS  Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GA, Olivieri S (2008) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12(3):516–520. https://doi.org/10.1046/j.1523-1739.1998.012003516.x

    Article  Google Scholar 

  • Morales M, Carilla J, Grau HR, Villalba R (2015) Multi-century lake area changes in the southern Altiplano: a tree-ring-based reconstruction. Clim Past 11(9):1821–1855. https://doi.org/10.5194/cp-11-1139-2015

    Article  Google Scholar 

  • Morales MS, Christie DA, Neukom R, Rojas F, Villalba R (2018) Variabilidad hidroclimática en el sur del Altiplano: pasado, presente y futuro. In HR Grau, MJ Babot, AE Izquierdo y A Grau (eds.), La Puna argentina: naturaleza y cultura. Serie de Conservación de la Naturaleza Vol. 24, pp 95–91

  • Müller H, Rufin P, Griffiths P, Barros Siqueira AJ, Hostert P (2015) Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ 156:490–499. https://doi.org/10.1016/j.rse.2014.10.014

    Article  Google Scholar 

  • Paoli H, Bianchi AR, Yañez CE, Volante J N, Fernández DR, Mattalía MC, Noé YE (2002) Recursos Hídricos de la Puna, valles y Bolsones áridos del Noroeste Argentino. Convenio INTA EEA Salta-CIED

    Google Scholar 

  • Philander SG (1989) El Niño, La Niña, and the southern oscillation. In International geophysics series, vol. 46, Academic Press, San Diego, CA, 293 pp.

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature. 502(7472):541–545. https://doi.org/10.1038/nature12580

    Article  CAS  Google Scholar 

  • Reboratti C (2005) Situación ambiental en las ecorregiones Puna y Altos Andes. In Brown A, Martinez Ortiz U, Acerbi M, Corcuera JF (eds.) La situación ambiental argentina, Fundación Vida Silvestre Argentina: Buenos Aires, Argentina, pp 33-51

  • Rokni K, Ahmad A, Selamat A, Hazini S (2014) Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens 6(5):4173–4189. https://doi.org/10.3390/rs6054173

    Article  Google Scholar 

  • Squeo FA, Veit H, Arancio G, Gutierrez JR, Arroyo MT, Olivares N (1993) Spatial heterogeneity of high mountain vegetation in the Andean desert zone of Chile. Mt Res Dev 13(2):203–209 https://www.jstor.org/stable/3673638

    Article  Google Scholar 

  • Squeo FA, Warner BG, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Nat 79(2):245–255 http://repositorio.uchile.cl/handle/2250/119990

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. Int J Remote Sens 7(11):1395–1416. https://doi.org/10.1080/01431168608948944

    Article  Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. https://doi.org/10.1029/2008JD011021

    Article  Google Scholar 

  • Villagrán MC, Castro RV (1997) Etnobotánica y manejo ganadero de las vegas, bofedales y quebradas en el loa superior, Andes de Antofagasta, Segunda Región, Chile. Chungara Rev Antrop Chil 29(2):275–304

    Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res Atmos 105(D10):12447–12460. https://doi.org/10.1029/2000JD900134

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B, Bradley R (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Science Review 89(3–4):79–96. https://doi.org/10.1016/j.earscirev.2008.04.002

    Article  Google Scholar 

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17(17):3334–3348. https://doi.org/10.1175/1520-0442(2004)017%3C3334:IVOSCC%3E2.0.CO;2

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Webster KE, Soranno PA, Baines SB, Kratz TK, Bowser CJ, Dillon PJ, Everett J, Hecky RE (2000) Structuring features of lake districts: landscape controls on lake chemical responses to drought. Freshw Biol 43(3):499–515. https://doi.org/10.1046/j.1365-2427.2000.00571.x

    Article  CAS  Google Scholar 

  • White MA, de Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O'Keefe J, Zhang G, Nemani RR, van Leeuwen WJD, Brown JF, De Witt A, Schaepman M, Lin X, Dettinger M, Bailey AS, Kimball J, Schwartz MD, Baldocchi DD, Lee JT, Lauenroth WK (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Chang Biol 15(10):2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x

    Article  Google Scholar 

  • Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proceedings of the 17th climate diagnostics workshop, Norman, OK, NOAA/N MC/CAC, NSSL, Oklahoma Climate Survey. CIMMS and the School of Meteorology, University of Oklahoma, pp 52–57

    Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events - how does 1997/98 rank? Weather. 53(9):315–324. https://doi.org/10.1002/j.1477-8696.1998.tb06408.x

    Article  Google Scholar 

  • Yeh SW, Kirtman BP (2007) ENSO amplitude changes due to climate change projections in different coupled models. J Clim 20(2):203–217. https://doi.org/10.1175/JCLI4001.1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank USGS for providing access to the Landsat image archive, and Google for providing the space in the cloud that made it possible to analyze a large amount of data. Thanks to Sofía Nanni for her contribution in reviewing the English language of this work.

Funding

This work was funded by the CONICET, Grants from PICT2012-1565 FONCYT and PICT 2016-2173 FONCYT to RG, EC, CN and AI; and Rufford Small Grants 81430c-1 to EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Casagranda.

Additional information

Editor: Juan Ignacio Lopez Moreno

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagranda, E., Navarro, C., Grau, H.R. et al. Interannual lake fluctuations in the Argentine Puna: relationships with its associated peatlands and climate change. Reg Environ Change 19, 1737–1750 (2019). https://doi.org/10.1007/s10113-019-01514-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-019-01514-7

Keywords

Navigation