Skip to main content

Modeling Cedrus atlantica potential distribution in North Africa across time: new putative glacial refugia and future range shifts under climate change

Abstract

In recent years, species distribution models have been used to gain a better understanding of past and future range dynamics of species. Here, we focus on a keystone species of the North African forest ecosystem (Cedrus atlantica) by calculating a consensus model of the species current geographic potential distribution in North Africa, based on a weighted average method aiming to decrease uncertainty. The consensus model is obtained using seven species distribution model algorithms taking into account 24 environmental variables. The model is then applied to several past and future time slices. Past projections refer to the Middle-Holocene and the Last Glacial Maximum, whereas those of future are related to expect conditions around 2050 and 2070. We found that the current potential distribution of Cedrus atlantica is larger than its actual geographical distribution. For some explanatory variables, the analysis revealed their importance for the species current distribution. Among all obtained models, that for the Middle-Holocene showed the maximum expansion of the species potential distribution. The Last Glacial Maximum model provided new putative glacial refugia of Cedrus atlantica, not shown by other mechanistic models and palaeorecord localities. Future projections revealed a significant and fast contraction with shifting in altitude of the species range, showing more fragmented areas and even species disappearance in many North African localities. These findings can help to restore cedar forests and conserve them by ex situ strategies according to the future defined refugia in North Africa. Attention should be paid to the resolution of related output maps, the current biotic interactions, and those that may arise under climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdessemed K (1981) Le cèdre de l’Atlas dans les massifs de l’Aures et du Bélezma. Etude phyto sociologique et problème de conservation et d’aménagement. Ph.D. Ing. thesis, Aix Marseille III University, France

  2. Abdessemed K (1984) Les problèmes de la dégradation des formations végétales dans l’Aurès (Algérie) Première partie: La dégradation, ses origines et ses conséquences. Forêt Médit 6:19–28

    Google Scholar 

  3. Achhal A, Akabli O, Barbero M, Benabid A, M’hirit A, Peyre C, Quezel P, Rivas-Martinez S (1980) A propos de la valeur bioclimatique et dynamique de quelques essences forestières au Maroc. Ecol Medit 5:211–249

    Google Scholar 

  4. Alba-Sánchez F, López-Sáez JA, BB-d P, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228. https://doi.org/10.1111/j.1472-4642.2010.00636.x

    Article  Google Scholar 

  5. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  6. Al-Qaddi N, Vessella F, Stephan J, Al-Eisawi D, Schirone B (2017) Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Reg Environ Chang 17:143–156. https://doi.org/10.1007/s10113-016-0987-2

    Article  Google Scholar 

  7. Anderson RP, Martínez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179. https://doi.org/10.1016/S0006-3207(03)00187-3

    Article  Google Scholar 

  8. Arar A, Tabet S, Nouidjem Y, Bounar R, Chenchouni H (2019) Projected small-scale range reductions of Cedrus atlantica forests due to climate change at the Belezma National Park (Algeria). In: Chenchouni H, Errami E, Rocha F, Sabato L (eds) Exploring the nexus of geoecology, geography, geoarcheology and geotourism: advances and applications for sustainable development in environmental sciences and agroforestry research, Advances in Science, Technology & Innovation. Springer, Switzerland, pp 15–19

    Google Scholar 

  9. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538. https://doi.org/10.1111/j.1466-822x.2005.00182.x

    Article  Google Scholar 

  10. Arenas M, Ray N, Currat M, Excoffier L (2012) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29:207–218. https://doi.org/10.1093/molbev/msr187

    CAS  Article  Google Scholar 

  11. Attorre F, Francesconi F, Scarnati L, De Sanctis M, Alfo M, Bruno F (2008) Predicting the effect of climate change on tree species abundance and distribution at a regional scale. IForest 1:132–139. https://doi.org/10.3832/ifor0467-0010132

    Article  Google Scholar 

  12. Aussenac G (1984) Le Cèdre, essai d’interprétation bioclimatique et écophysiologique. Bull Soc bot France Actual Bot 131:385–398

    Google Scholar 

  13. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118. https://doi.org/10.1016/S0304-3800(02)00205-3

    Article  Google Scholar 

  14. Bahn V, McGill BJ (2013) Testing the predictive performance of distribution models. Oikos 122:321–331. https://doi.org/10.1111/j.1600-0706.2012.00299.x

    Article  Google Scholar 

  15. Ballouche A, Damblon F (1988) Nouvelles données palynologiques sur la végétation holocène du Maroc. Actes Xe Symposium APLF. Inst Fr Pondichéry, Trav Sec Sci et Tech 25:83–90

    Google Scholar 

  16. Ben Tiba B (1995) Cinq millénaires d’histoire de la végétation à Djebel El Ghorra, Tunisie septentrionale. 2nd Sympsium on African Palynology, Tervuren (Belgium). Publ Occas CIFEG 31:49–55

    Google Scholar 

  17. Ben Tiba B, Reille M (1982) Recherches pollenanalytiques dans les montagnes de Kroumirie (Tunisie septentrionale): premiers résultats. Ecol Medit 8:75–86

    Google Scholar 

  18. Benabid A (1985) Les écosystèmes forestiers, préforestiers et presteppiques du Maroc: diversité, répartition biogéographique et problèmes posés par leur aménagement. Forêt Médit 7:53–64

    Google Scholar 

  19. Benabid A (1994) Biogeographie phytosociologie et phytodynamique des cedraies de l’Atlas Cedrus atlantica (Manetti). Annales de la Recherche Forestière au Maroc 27:61–76

    Google Scholar 

  20. Benito Garzón M, Sánchez de Dios R, Sáinz Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30:120–134. https://doi.org/10.1111/j.2006.0906-7590.04813.x

    Article  Google Scholar 

  21. Benito BM, Martinez-Ortega MM, Munoz LM, Lorite J, Penas J (2009) Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodivers Conserv 18:2509–2520. https://doi.org/10.1007/s10531-009-9604-8

    Article  Google Scholar 

  22. Bensaid S, Hamimi S, Tabti W (1998) La question du reboisement en Algérie. Secheresse 9:5–11

    Google Scholar 

  23. Bensaid S, Gasmi A, Benhafied I (2006) Les forêts d’Algérie, de Césarée la romaine à ce jour. Forêt Médit 27:267–274

    Google Scholar 

  24. Benslama M, Andrieu-Ponel V, Guiter F, Reille M, de Beaulieu JL, Migliore J, Djamali M (2010) Nouvelles contributions a l’histoire tardiglaciaire et holocene de la vegetation en Algerie: analyses polliniques de deux profils sedimentaires du complexe humide d’El-Kala. C R Biol 333:744–754. https://doi.org/10.1016/j.crvi.2010.08.002

    Article  Google Scholar 

  25. Bentlage B, Peterson AT, Cartwright P (2009) Inferring distributions of chirodropid box-jellyfishes (Cnidaria: Cubozoa) in geographic and ecological space using ecological niche modeling. Mar Ecol Prog Ser 384:121–133. https://doi.org/10.3354/meps08012

    Article  Google Scholar 

  26. Bentouati A, Bariteau M (2006) Réflexions sur le dépérissement du Cèdre de l’Atlas des Aurès (Algérie). Forêt Médit 27:317–322

    Google Scholar 

  27. Bouahmed A (2012) Application d’un Système d’Information Géographique à la cartographie physionomique de la cédraie mixte des Aït Ouabane (Djurdjura Nord-Est). Mém. Magister, Ziane Achour University of Djelfa, Algeria

  28. Boudy P (1950) Économie forestière nord-africaine: Monographies et traitements des essences forestières, vol 2. Larose, Paris

    Google Scholar 

  29. Boudy P (1955) Économie forestière nord-africaine: description forestière de l’Algérie et de la Tunisie, Tome quatrième, vol 4. Larose, Paris

    Google Scholar 

  30. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  31. Buckley TR, Marske KA, Attanayake D (2009) Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect Argosarchus horridus (White). Mol Ecol 18:4650–4663. https://doi.org/10.1111/j.1365-294X.2009.04396.x

    Article  Google Scholar 

  32. Campredon J (1934) Le bois de cèdre. Étude des propriétés physiques et mécaniques de quelques bois exotiques. Ann Eco Nat Eaux et Forêts 5:179–220

    Google Scholar 

  33. Chbouki N (1994) Une synthèse dendroclimatique du cèdre de l’Atlas. Ann Rech For Maroc 27:33–59

    Google Scholar 

  34. Cheddadi R, Fady B, François L, Hajar L, Suc JP, Huang K, Demarteau M, Vendramin GG, Ortu E (2009) Putative glacial refugia of Cedrus atlantica deduced from quaternary pollen records and modern genetic diversity. J Biogeogr 36:1361–1371. https://doi.org/10.1111/j.1365-2699.2008.02063.x

    Article  Google Scholar 

  35. Cheddadi R, Bouaissa O, Rhoujjati A, Dezileau L (2016) Environmental changes in the Moroccan western Rif Mountains over the last 9,000 years. Quaternaire 27:15–25. https://doi.org/10.4000/quaternaire.7517

    Article  Google Scholar 

  36. Combe A (1889) Les forêts de l’Algérie. Giralt, Algiers

    Google Scholar 

  37. Coro G, Pagano P, Ellenbroek A (2013) Combining simulated expert knowledge with neural networks to produce ecological niche models for Latimeria chalumnae. Ecol Model 268:55–63. https://doi.org/10.1016/j.ecolmodel.2013.08.005

    Article  Google Scholar 

  38. Courbet F (1991) Tarif de cubage à deux entrées pour le cèdre de l’Atlas (Cedrus atlantica Manetti en France). Rev For Fr 43:215–226. https://doi.org/10.4267/2042/26200

    Article  Google Scholar 

  39. Currey DR (1974) Continentality of extratropical climates. Ann Assoc Am Geogr 64:268–280

    Article  Google Scholar 

  40. Damnati B, Ben Hardouze H, Guibal F, Hoffsummer P (2014) Reconstitution du climat en se basant sur la dendroclimatologie: étude préliminaire du cas du cèdre de l’Atlas (moyen Atlas marocain). Actes RQM6:101–106

  41. De Smet K, Bouaza F (1984) La structure forestière du mont Babor. Silva Gandavensis 50:65–84

    Google Scholar 

  42. De Souza Muñoz ME, De Giovanni R, De Siqueira MF, Sutton T, Brewer P, Pereira RS, Canhos DAL, Canhos VP (2009) openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica 15:111–135. https://doi.org/10.1007/s10707-009-0090-7

    Article  Google Scholar 

  43. Demarteau M, François L, Cheddadi R, Roche E (2007) Réponses de Cedrus atlantica aux changements climatiques passés et futurs. Geo-Eco-Trop 31:105–146

    Google Scholar 

  44. Derridj A (1990) Etude des populations de Cedrus atlantica Manetti en Algérie. Ph.D. thesis, Paul Sabatier University, Toulouse, France

  45. DGF (2007) Direction générale des forêts, Algérie. www.dgf.gov.dz/index.php?rubrique=statistiques&section=indicateurs

  46. El Azzouzi K, Keller R (1998) Propriétés technologiques du bois de cèdre de l’Atlas (Cedrus atlantica Manetti). Forêt Médit 19:11–33

    Google Scholar 

  47. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  48. Emberger L (1930) La végétation de la région méditerranéenne Essai d’une classification des groupements végétaux. Rev Gen Bot 42:641–662

    Google Scholar 

  49. Emberger L (1938a) Contribution à la connaissance des Cèdres et en particulier du Deodar et du Cèdre de l’Atlas. Rev Bot App et d’Agr Trop 18:77–92

    Google Scholar 

  50. Emberger L (1938b) Les arbres du Maroc et comment les reconnaître. Larose, Paris

    Google Scholar 

  51. Ezzahiri M, Belghazi B, Bahmad M (1994) Bilan de la régénération naturelle de la cédraie dans les parcelles clôturée du moyen Atlas, Maroc. Ann Rech For Maroc 27:259–268

    Google Scholar 

  52. Faurel L, Laffite R (1949) Facteurs de répartition des cédraies dans les massifs de l’Aurès et du Bélezma. Bull Soc Hist Nat Afr N 40:178–186

    Google Scholar 

  53. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  54. Ferraz KMPMDB, Ferraz SFDB, Paula RCD, Beisiegel B, Breitenmoser C (2012) Species distribution modeling for conservation purposes. Nat Conservação 10:214–220. https://doi.org/10.4322/natcon.2012.032

    Article  Google Scholar 

  55. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  56. Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499. https://doi.org/10.1177/030913339501900403

    Article  Google Scholar 

  57. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  58. Franklin J (2013) Species distribution models in conservation biogeography: developments and challenges. Divers Distrib 19:1217–1223. https://doi.org/10.1111/ddi.12125

    Article  Google Scholar 

  59. Ghailoule D, Rossi J-P, Lieutier F (2012) Caractérisation spatio-temporelle du dépérissement du cèdre (Cedrus atlantica Manetti) dans deux peuplements du Moyen Atlas marocain : Résultats préliminaires. MEDINSECT 3 Symposium “Entomological Research in Mediterranean Forest Ecosystems”, 8–11-Mai, Hammamet (Tunis) In: Annales de l’INRGREF 17 (Numéro spécial), pp. 145–156

  60. Giannini TC, Saraiva AM, Alves-dos-Santos I (2010) Ecological niche modeling and geographical distribution of pollinator and plants: a case study of Peponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecol Inform 5:59–66. https://doi.org/10.1016/j.ecoinf.2009.09.003

    Article  Google Scholar 

  61. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  62. Gougeon FA, Leckie DG (2003) Extraction d’information forestière à partir d’images à haute résolution spatiale en utilisant une méthode de reconnaissance individuelle des cimes d’arbres. Centre de foresterie du Pacifique, Service canadien des forêts, Ressources naturelles Canada, Victoria, rapport d’information BC-X-396F:25 P

  63. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  64. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  65. Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100. https://doi.org/10.1016/S0304-3800(02)00204-1

    Article  Google Scholar 

  66. Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77:103–123. https://doi.org/10.1007/s10994-009-5119-5

    Article  Google Scholar 

  67. Hidalgo PJ, Marin JM, Quijada J, Moreira JM (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. Forest Ecol Manag 255:25–34. https://doi.org/10.1016/j.foreco.2007.07.012

    Article  Google Scholar 

  68. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  69. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  70. IPCC (2007) Climate change 2007: synthesis report. Summary for policymakers. Available at:www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf

  71. Jaryan V, Datta A, Uniyal SK, Kumar A, Gupta RC, Singh RD (2013) Modelling potential distribution of Sapium sebiferum—an invasive tree species in western Himalaya. Curr Sci 105:1282–1288

    Google Scholar 

  72. Johnson CJ, Gillingham MP (2005) An evaluation of mapped species distribution models used for conservation planning. Environ Conserv 32:117–128. https://doi.org/10.1017/S0376892905002171

    Article  Google Scholar 

  73. Kaabeche M (1996) Les relations climat-végétation dans le bassin du Hodna (Algérie). Acta Bot Gallica 143:85–94

    Article  Google Scholar 

  74. Kherchouche D, Kalla M, Gutiérrez EM, Attalah S, Bouzghaia M (2012) Impact of droughts on Cedrus atlantica forests dieback in the Aurès (Algeria). Journal of Life Sciences 6:1262–1269. https://doi.org/10.17265/1934-7391/2012.11.011

    Article  Google Scholar 

  75. Kherchouche D, Kalla M, Gutierrez E, Briki A, Hamchi A (2013) La sécheresse et le dépérissement du cèdre de l’Atlas (Cedrus atlantica Manetti) dans le massif du Bélezma (Algérie). Secheresse 24:129–137. https://doi.org/10.1684/sec.2013.0384

    Article  Google Scholar 

  76. Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS One 4. https://doi.org/10.1371/journal.pone.0006392

    Article  Google Scholar 

  77. Krouchi F, Derridj A, Lefèvre F (2004) Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. Forest Ecol Manag 197:181–189. https://doi.org/10.1016/j.foreco.2004.05.013

    Article  Google Scholar 

  78. Lamb HF, vanderKaars S (1995) Vegetational response to holocene climatic change: pollen and palaeolimnological data from the Middle Atlas, Morocco. Holocene 5:400–408. https://doi.org/10.1177/095968369500500402

    Article  Google Scholar 

  79. Lamb H, Eicher U, Switsur V (1989) An 18,000-year record of vegetation, lake-level and climatic change from Tigalmamine, Middle Atlas, Morocco. J Biogeogr:65–74. https://doi.org/10.2307/2845311

    Article  Google Scholar 

  80. Lamb H, Roberts N, Leng M, Barker P, Benkaddour A, van der Kaars S (1999) Lake evolution in a semi-arid montane environment: response to catchment change and hydroclimatic variation. J Paleolimnol 21:325–343. https://doi.org/10.1023/A:1008099602205

    Article  Google Scholar 

  81. Leidenberger S, Obst M, Kulawik R, Stelzer K, Heyer K, Hardisty A, Bourlat SJ (2015) Evaluating the potential of ecological niche modelling as a component in marine non-indigenous species risk assessments. Mar Pollut Bull 97:470–487. https://doi.org/10.1016/j.marpolbul.2015.04.033

    CAS  Article  Google Scholar 

  82. Lepoutre B, Pujos A (1964) Facteurs climatiques déterminant les conditions de germination et d’installation des plantules de cèdre. Ann Rech For Maroc 7:21–54

    Google Scholar 

  83. Linares JC, Taïqui L, Camarero JJ (2011) Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlantica) in the Moroccan middle Atlas forests. Forests 2:777–796. https://doi.org/10.3390/f2030777

    Article  Google Scholar 

  84. M’hirit O (1999) Le Cèdre de l’Atlas à travers le réseau Silva mediterranea «Cèdre». Bilan et perspectives. Forêt Médit 20:91–100

    Google Scholar 

  85. M’hirit O, Benzyane M (2006) Le cèdre de l’Atlas: Mémoire du temps. Mardaga, Maroc

    Google Scholar 

  86. Madoui A, Gehu J-M (1999) Etat de la végétation dans la forêt du Bou-Taleb: Mont du Hodna, Algérie. Forêt Médit 20:162–168

    Google Scholar 

  87. Maire R (1924) Etudes sur la végétation et la flore du grand Atlas et du moyen Atlas marocains. Mem Soc Sci Nat du Maroc 7:220

    Google Scholar 

  88. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931. https://doi.org/10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  89. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x

    Article  Google Scholar 

  90. Martínez-Meyer E, Peterson AT (2006) Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition. J Biogeogr 33:1779–1789. https://doi.org/10.1111/j.1365-2699.2006.01482_33_10.x

    Article  Google Scholar 

  91. Martínez-Meyer E, Townsend Peterson A, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13:305–314. https://doi.org/10.1111/j.1466-822X.2004.00107.x

    Article  Google Scholar 

  92. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  93. Meharzi MK (1994) Le rôle de l’orographie dans la répartition spatiale des précipitations dans le massif de l’Aurès. Méditerranée:73–78. https://doi.org/10.3406/medit.1994.2861

    Article  Google Scholar 

  94. Messaoudène M, Rabhi K, Megdoud A, Sarmoun M, Dahmani-Megrerouche M (2013) Etat des lieux et perspectives des cédraies algériennes. Forêt Médit 34:341–346

    Google Scholar 

  95. Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 96:784–794. https://doi.org/10.1111/j.1365-2745.2008.01369.x

    Article  Google Scholar 

  96. Mouna M (2009) Phaenops marmottani Fairmaire (Coleoptera Buprestidae), xylophage primaire pour le cèdre de l’Atlas (Cedrus atlantica Man.). Bull Inst Sci Rabat 31:85–90

    Google Scholar 

  97. Negre R (1952) Observations phytosociologiques et écologiques sommaires sur la cédraie de Kissarit (Brigade forestière de Aïn Leuh Moyen Atlas Central). Phyton 4(1–3):59–71

    Google Scholar 

  98. Nourelbait M, Rhoujjati A, Benkaddour A, Carré M, Eynaud F, Martinez P, Cheddadi R (2016) Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco. Clim Past 12:1029–1042. https://doi.org/10.5194/cp-12-1029-2016

    Article  Google Scholar 

  99. Paine DP, Kiser JD (2012) Aerial photography and image interpretation, 3rd edn. John Wiley & Sons, Inc, New York, NY

    Book  Google Scholar 

  100. Pavari A (1927) Il Cedrus atlantica in Italia. Bull Silva Medit: 8–15

  101. Pearman PB, Randin CF, Broennimann O, Vittoz P, van der Knaap WO, Engler R, Lay GL, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369. https://doi.org/10.1111/j.1461-0248.2007.01150.x

    Article  Google Scholar 

  102. Pearson RG (2010) Species’ distribution modeling for conservation educators and practitioners. Lessons in conservation. Am Mus Natl Hist 3:54–89

    Google Scholar 

  103. Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conservação 10:102–107. https://doi.org/10.4322/natcon.2012.019

    Article  Google Scholar 

  104. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. https://doi.org/10.1126/science.285.5431.1265

    CAS  Article  Google Scholar 

  105. Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  106. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions, vol 49. Princeton University Press, Princeton

    Book  Google Scholar 

  107. Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272–278. https://doi.org/10.1111/j.0906-7590.2008.5378.x

    Article  Google Scholar 

  108. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff (Canada), pp. 655–662

  109. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  110. Pike DA (2013) Climate influences the global distribution of sea turtle nesting. Glob Ecol Biogeogr 22:555–566. https://doi.org/10.1111/geb.12025

    Article  Google Scholar 

  111. Pons A (1998) L’histoire du genre Cedrus d’après les données paléobotaniques disponibles. Forêt Médit 19:236–242

    Google Scholar 

  112. Pons A, Reille M (1984) Originalité de l’histoire climatique des pourtours de la Méditerranée occidentale durant le Pléistocène supérieur par rapport à celle de l’Europe occidentale. Bull Soc bot France Actual bot 131:69–76. https://doi.org/10.1080/01811789.1984.10826648

    Article  Google Scholar 

  113. Pouteau R, Meyer JY, Stoll B (2011) A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests. Ecol Model 222:2631–2641. https://doi.org/10.1016/j.ecolmodel.2011.04.030

    Article  Google Scholar 

  114. Provencher L, Dubois J-MM (2007) Précis de télédétection: volume 4 Méthodes de photointerprétation et d’interprétation d’image. Presses de l’Université du Québec, Québec

    Google Scholar 

  115. Quézel P (1998) Cèdres et cédraies du pourtour méditerranéen: signification bioclimatique et phytogéographique. Forêt Médit 19:243–260

    Google Scholar 

  116. Quézel P, Barbero M, Loisel R (1990) Les reboisements en région méditerranéenne. Incidences biologiques et économiques. Forêt Médit 12:103–114

    Google Scholar 

  117. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL www.R-project.org/

  118. Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703. https://doi.org/10.1111/j.1365-2699.2006.01466.x

    Article  Google Scholar 

  119. Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8:912–929. https://doi.org/10.1046/j.1365-2486.2002.00516.x

    Article  Google Scholar 

  120. Rhoujjati A, Cheddadi R, Taïeb M, Baali A, Ortu E (2010) Environmental changes over the past c. 29,000 years in the Middle Atlas (Morocco): a record from Lake Ifrah. J Arid Environ 74:737–745. https://doi.org/10.1016/j.jaridenv.2009.09.006

    Article  Google Scholar 

  121. Rognon P (1987) Late quaternary climatic reconstruction for the Maghreb (North Africa). Palaeogeogr Palaeoclimatol Palaeoecol 58:11–34. https://doi.org/10.1016/0031-0182(87)90003-4

    Article  Google Scholar 

  122. Salamani M (1993) Premières données paléophytogéograpiques du cèdre de l’Atlas (Cedrus atlantica) dans la région de Grande Kabylie (NE Algérie). Palynosciences 2:147–155

    Google Scholar 

  123. Seltzer P (1946) Le climat de l’Algérie. Travaux de l’institut de météorologie et de physique du Globe de l’Algérie (hors série), Université d’Alger, Algerie

  124. Slimani S, Derridj A, Gutierrez E (2014a) Ecological response of Cedrus atlantica to climate variability in the massif of Guetiane (Algeria). Forest Syst 23:448–460. https://doi.org/10.5424/fs/2014233-05175

    Article  Google Scholar 

  125. Slimani S, Touchan R, Derridj A, Kherchouche D, Gutierrez E (2014b) Fire history of Atlas cedar (Cedrus atlantica Manetti) in Mount Chelia, northern Algeria. J Arid Environ 104:116–123. https://doi.org/10.1016/j.jaridenv.2014.02.008

    Article  Google Scholar 

  126. Stambouli-Essassi S, Roche E, Bouzid S (2007) Evolution de la végétation et du climat dans le Nord-ouest de la Tunisie au cours des 40 derniers millénaires. Geo-Eco-Trop 31:171–214

    Google Scholar 

  127. Stockwell D (2006) Niche modeling: predictions from statistical distributions. Chapman & Hall/CRC, London

    Book  Google Scholar 

  128. Sutton T, Giovanni R, Ferreira M (2007) Introduction à OpenModeller: Un ensemble de bibliothèques pour la modélisation des niches fondamentales. Journal de l’OSGeo 1:2–7

    Google Scholar 

  129. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    CAS  Article  Google Scholar 

  130. Tabel J, Khater C, Rhoujjati A, Dezileau L, Bouimetarhan I, Carre M, Vidal L, Benkaddour A, Nourelbait M, Cheddadi R (2016) Environmental changes over the past 25 000 years in the southern Middle Atlas, Morocco. J Quat Sci 31:93–102. https://doi.org/10.1002/jqs.2841

    Article  Google Scholar 

  131. Tabet S, Belhemra M, Francois L, Arar A (2018) Evaluation by prediction of the natural range shrinkage of Quercus ilex L. in eastern Algeria. Forestist 68:7–15

    Article  Google Scholar 

  132. Tarkesh M, Jetschke G (2012) Comparison of six correlative models in predictive vegetation mapping on a local scale. Environ Ecol Stat 19:437–457. https://doi.org/10.1007/s10651-012-0194-3

    Article  Google Scholar 

  133. Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF (2006) Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. Am J Bot 93:1274–1280. https://doi.org/10.3732/ajb.93.9.1274

    CAS  Article  Google Scholar 

  134. Thomas P (2013) Cedrus atlantica. The IUCN red list of threatened species 2013: e.T42303A2970716. doi:https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42303A2970716.en

  135. Thorn JS, Nijman V, Smith D, Nekaris KAI (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers Distrib 15:289–298. https://doi.org/10.1111/j.1472-4642.2008.00535.x

    Article  Google Scholar 

  136. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362

    Article  Google Scholar 

  137. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027. https://doi.org/10.1111/j.1365-2486.2004.00859.x

    Article  Google Scholar 

  138. Thuiller W, Araújo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci 14:669–680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.x

    Article  Google Scholar 

  139. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  140. Till C, Guiot J (1990) Reconstruction of precipitation in Morocco since 1100 AD based on Cedrus atlantica tree-ring widths. Quat Res 33:337–351. https://doi.org/10.1016/0033-5894(90)90060-X

    Article  Google Scholar 

  141. Toth J (1973) Première approche de la production potentielle du cèdre de l’Atlas dans le sud de la France. Rev For Fr 25:381–389. https://doi.org/10.4267/2042/20758

    Article  Google Scholar 

  142. Toth J (2005) Le cèdre de France: étude approfondie de l’espèce. L’Harmattan, Paris

    Google Scholar 

  143. Touchan R, Anchukaitis KJ, Meko DM, Sabir M, Attalah S, Aloui A (2010) Spatiotemporal drought variability in northwestern Africa over the last nine centuries. Clim Dyn 37:237–252. https://doi.org/10.1007/s00382-010-0804-4

    Article  Google Scholar 

  144. Urbina-Cardona JN, Flores-Villela O (2010) Ecological-niche modeling and prioritization of conservation-area networks for Mexican herpetofauna. Conserv Biol 24:1031–1041. https://doi.org/10.1111/j.1523-1739.2009.01432.x

    Article  Google Scholar 

  145. Vessella F, Schirone B (2013) Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. Forest Ecol Manag 304:150–161. https://doi.org/10.1016/j.foreco.2013.05.006

    Article  Google Scholar 

  146. Vessella F, Simeone MC, Schirone B (2015) Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat Sci Rev 119:85–93. https://doi.org/10.1016/j.quascirev.2015.04.018

    Article  Google Scholar 

  147. Wei T, Simko V (2016) Corrplot: visualization of a correlation matrix. R package version 0.77.cran.r-project.org/web/packages/corrplot /

  148. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  149. Wilson JS, Pitts JP (2012) Identifying Pleistocene refugia in North American cold deserts using phylogeographic analyses and ecological niche modelling. Divers Distrib 18:1139–1152. https://doi.org/10.1111/j.1472-4642.2012.00902.x

    Article  Google Scholar 

  150. Yahi N, Djellouli Y (2010) Groupements forestiers et préforestiers à Cedrus atlantica Manetti d’Algérie: état des connaissances et dynamique des syntaxons. Rev For Fr 62:309–316. https://doi.org/10.4267/2042/38945

    Article  Google Scholar 

  151. Yahi N, Djellouli Y, de Foucault B (2008) Diversités floristique et biogéographique des cédraies d’Algérie. Acta Bot Gallica 155:389–402. https://doi.org/10.1080/12538078.2008.10516119

    Article  Google Scholar 

  152. Yang X-Q, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004

    CAS  Article  Google Scholar 

  153. Zhang M-G, Zhou Z-K, Chen W-Y, Slik JWF, Cannon CH, Raes N (2012) Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biol Conserv 153:257–264. https://doi.org/10.1016/j.biocon.2012.04.023

    Article  Google Scholar 

Download references

Acknowledgements

A special thanks to Dr. Peter Thomas (Keele University, UK) for the linguistic revision of the manuscript.

Funding

This work was supported by an Algerian PhD scholarship within the framework of national scholarship program (PNE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Bouahmed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor: Wolfgang Cramer

Electronic supplementary material

ESM 1

(PDF 2452 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouahmed, A., Vessella, F., Schirone, B. et al. Modeling Cedrus atlantica potential distribution in North Africa across time: new putative glacial refugia and future range shifts under climate change. Reg Environ Change 19, 1667–1682 (2019). https://doi.org/10.1007/s10113-019-01503-w

Download citation

Keywords

  • SDMs
  • Cedrus atlantica
  • Potential distribution
  • Consensus model
  • Climate change
  • Glacial refugia
  • North Africa