Reallocating regional water apparent productivity in the long term: methodological contributions and application for Spain

Abstract

The main objective of this paper is to quantify and explain the main trends and determinants of long-term agricultural water apparent productivity (WAP). The WAP shows the economic value of products per cubic meter of water used and is calculated as the ratio between the value of agricultural production and its water use (the water footprint). In order to understand economic and agricultural structural changes, we use index decomposition analysis, novel in the study of WAP. This approach is consistently multidimensional (results for different crops and provinces are analyzed) and multilevel (different levels of crops and regional disaggregation are combined), and hence applications are possible for different regions and settings. In the case of Spanish agriculture (analyzed here), the study is of particular importance, given the profound political, economic, and agricultural transformations experienced in the twentieth century. Furthermore, given Spain’s particular environmental conditions—such as the high number of sunshine hours and the unequal distribution of rainfall—the spatial and temporal differences are notable in terms of crop production composition, economic value, and water footprint. The results show a 27% increase in agricultural WAP from 1955 to 2005–2010, totally explained by an improvement in water efficiency (intensity effect reflecting the use of water relative to the production attained) that happened in most areas of the country. The relative variations in the regional composition of the water footprint (share effect), and especially the crop production patterns (composition effect), contributed to a slowdown in total WAP at the country level. However, the share and composition effects encouraged the WAP’s growth in South and Southeast Spain, areas that produced high value-added crops with large water needs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    According to the water framework directive (WFD, 2000/60/EC) the ecological and chemical status of surface and groundwater is an assessment of the quality of the structure and functioning of water ecosystems. It shows the influence of pressures (e.g., pollution, habitat degradation and climate change) on the identified quality elements. It is assessed according to different criteria against the scale of high, good, moderate, poor and bad.

  2. 2.

    The WAP differs from the water productivity, which according to the glossary in Garrido et al. (2010) is an efficiency term obtained as a ratio of product output (expressed either in yield, nutritional value or economic return) over water input. The water use efficiency is the “ratio between the irrigation water absorbed by plants and the amount of water actually withdrawn from its source for the purpose of irrigation” (see Glossary in Garrido et al. 2010).

  3. 3.

    Concretely, target 6.4. says “By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity.”

  4. 4.

    Trying to approximate the bias introduced by this assumption, we have calculated the deviation in the temporal change in yields (for the periods 1980–2005 and 2005–2010) between each province and Spain for certain representative crops. On this basis, we can conclude that for these crops and producing regions the deviation is small.

  5. 5.

    The logarithmic mean is expressed as \( L\left(x,y\right)=\frac{y-x}{\ln (y)-\ln (x)} \)

  6. 6.

    The production of 1955 represents 98.03% of the average in 1953–1957. The data for 1980 are also very close to the average production, being 95.82% of the average for 1978–1982. The production of 2005 represents 94.28% of the average between 2003 and 2007, meanwhile for 2010 is 102.44% of the average in 2008–2012. Furthermore, the average between 2005 and 2010 represents 97.48% of the average in 2001–2014.

  7. 7.

    The rate between pesetas and euro was fixed in 2002 at 166.386 pesetas per euro.

  8. 8.

    Table SI1 shows the provinces and autonomous communities in Spain. “Autonomous communities,” sometimes also called “Autonomous regions” are the first-level political and administrative division, created in accordance with the Spanish constitution of 1978, which currently correspond to the NUTS (Nomenclature of Territorial Units for Statistics) 2 level of the European Union. These are either equal to provinces (in the case of uniprovincial autonomous communities) or larger (in the case of autonomous communities formed by several provinces). Provinces correspond to the NUTS 3 level of the European Union.

  9. 9.

    We have also calculated the Spanish WAP at 2005–2010 constant prices, in order to evaluate possible variability in the results when estimating the WAP at constant 1980 prices (Table SI3). Table SI3 shows negligible differences between the average annual growth rates of the WAP at 1980 and 2005–2010 constant prices for the different sub-periods. It indicates that the historical trends in WAP are consistent and are not biased by the selection of the base year.

  10. 10.

    See Figures SI2, SI4, SI5, SI9, SI10, SI11, SI12, SI13, SI14 and Table SI4.

  11. 11.

    Our analysis uses 1980 constant prices. Thus, we omit the prices effect, in a context with relevant increases in this product price, generating a decrease in the intensity effect.

  12. 12.

    See also Figure SI6 in the SI for more detail at the provincial level.

  13. 13.

    The Mediterranean area represents 90% of the world’s olive plantations (Infante-Amate 2012b).

References

  1. Aldaya MM, Llamas MR (2012) El agua en España: bases para un pacto de futuro. Fundación Botín, Madrid

  2. Ang BW (2004) Decomposition analysis for policymaking in energy. Energy Policy 32:1131–1139. https://doi.org/10.1016/S0301-4215(03)00076-4

    Article  Google Scholar 

  3. Ang BW (2015) LMDI decomposition approach: a guide for implementation. Energy Policy 86:233–238. https://doi.org/10.1016/j.enpol.2015.07.007

    Article  Google Scholar 

  4. Ang BW, Choi KH (1997) Decomposition of aggregate energy and gas emission intensities for industry: a refined Divisia index method. Energy J 18:59–73. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol18-No3-3

    Article  Google Scholar 

  5. Ang BW, Liu N (2007) Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 35:238–246. https://doi.org/10.1016/j.enpol.2005.11.001

    Article  Google Scholar 

  6. Ang BW, Wang H (2015) Index decomposition analysis with multidimensional and multilevel energy data. Energy Econ 51:67–76. https://doi.org/10.1016/j.eneco.2015.06.004

    Article  Google Scholar 

  7. Ang BW, Zhang FQ (2000) A survey of index decomposition analysis in energy and environmental studies. Energy 25:1149–1176. https://doi.org/10.1016/S0360-5442(00)00039-6

    Article  CAS  Google Scholar 

  8. Ang BW, Mu AR, Zhou P (2010) Accounting frameworks for tracking energy efficiency trends. Energy Econ 32:1209–1219. https://doi.org/10.1016/j.eneco.2010.03.011

    Article  Google Scholar 

  9. Ávila JC, González de Molina M (1999) El agua como factor limitante de la producción agrícola en Andalucía oriental. La vega de Granada, siglos XIX-XX. In: Garrabou R, Naredo JM (eds) El Agua En Los Sistemas Agrarios. Una Perspectiva Histórica. Fundación Argentaria, Madrid

    Google Scholar 

  10. Biswas AK (2004) Integrated water resources management: a reassessment. Water Int 29:248–256. https://doi.org/10.1080/02508060408691775

    Article  Google Scholar 

  11. Brown A, Matlock MD (2011) A review of water scarcity indices and methodologies. The Sustainability Consortium, White paper, 106, 19

  12. Cazcarro I, Duarte R, Sánchez-Chóliz J (2013) Economic growth and the evolution of water consumption in Spain: a structural decomposition analysis. Ecol Econ 96:51–61. https://doi.org/10.1016/j.ecolecon.2013.09.010

    Article  Google Scholar 

  13. Cazcarro I, Duarte R, Martín-Retortillo M, Pinilla V, Serrano A (2015a) Water scarcity and agricultural growth in Spain: from curse to blessing? In: Badia-Miró M, Pinilla V, Willebald H (eds) Natural resources and economic growth: learning from history. Routledge, London, pp 339–361. https://doi.org/10.4324/9781315769356

    Google Scholar 

  14. Cazcarro I, Duarte R, Martín-Retortillo M, Pinilla V, Serrano A (2015b) How sustainable is the increase in the water footprint of the Spanish agricultural sector? A provincial analysis of the years 1955 and 2005. Sustainability 7:5094–5119. https://doi.org/10.3390/su7055094

    Article  Google Scholar 

  15. Chartzoulakis K, Bertaki M (2015) Sustainable water management in agriculture under climate change. Agric Agric Sci Procedia 4:88–98. https://doi.org/10.1016/j.aaspro.2015.03.011

    Article  Google Scholar 

  16. Chico D (2017) Influence of external drivers on water use efficiency and sustainability in agricultural production. [Thesis Doctoral]. E.T.S.I. Agrónomos, Universidad Politécnica de Madrid

  17. Chico D, Garrido A (2012) Overview of the extended water footprint in Spain: the importance of agricultural water consumption in the Spanish economy. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle? Taylor & Francis Group, London

    Google Scholar 

  18. Choi K-H, Ang BW (2012) Attribution of changes in Divisia real energy intensity index — an extension to index decomposition analysis. Energy Econ 34:171–176. https://doi.org/10.1016/j.eneco.2011.04.011

    Article  Google Scholar 

  19. Chouchane H, Hoekstra AY, Krol MS, Mekonnen MM (2015) The water footprint of Tunisia from an economic perspective. Ecol Indic 52:311–319. https://doi.org/10.1016/j.ecolind.2014.12.015

    Article  Google Scholar 

  20. Clar E, Serrano R, Pinilla V (2015) El comercio agroalimentario español en la segunda globalización, 1951–2011. Hist Agrar 65:113–145

    Google Scholar 

  21. Clar E, Martín-Retortillo M, Pinilla V (2016) Agricultura y desarrollo económico en España, 1800-2000. Estudios sobre el desarrollo económico español. In: Gallego D, Germán L, Pinilla V (eds) Estudios sobre el desarrollo económico español dedicados al profesor Eloy Fernández Clemente. Prensas Universitarias de Zaragoza, Zaragoza

    Google Scholar 

  22. Clar E, Martín-Retortillo M, Pinilla V (2018) The Spanish path of agrarian change, 1950–2005: from authoritarian to export-oriented productivism. J Agrar Chang 18:324–347. https://doi.org/10.1111/joac.12220

    Article  Google Scholar 

  23. Colinet Carmona MJ, Román Collado R (2016) LMDI decomposition analysis of energy consumption in Andalusia (Spain) during 2003–2012: the energy efficiency policy implications. Energy Effic 9:807–823

    Article  Google Scholar 

  24. Dalin C, Konar M, Hanasaki N, Rinaldo A, Rodriguez-Iturbe I (2012) Evolution of the global virtual water trade network. Proc Nat Acad Sci 109:5989–5994. https://doi.org/10.1073/pnas.1203176109

    Article  Google Scholar 

  25. Dinar A, Letey J (1991) Agricultural water marketing, allocative efficiency, and drainage reduction. J Environ Econ Manag 20:210–223. https://doi.org/10.1016/0095-0696(91)90009-8

    Article  Google Scholar 

  26. Dionisio C, Blanco P, Thaler T (2014) An input-output assessment of water productivity in the castile and León region (Spain) 929–944. https://doi.org/10.3390/w6040929

  27. Duarte R, Pinilla V, Serrano A (2014) The effect of globalisation on water consumption: a case study of the Spanish virtual water trade, 1849–1935. Ecol Econ 100:96–105. https://doi.org/10.1016/j.ecolecon.2014.01.020

    Article  Google Scholar 

  28. Embid-Irujo A (2005) Water pricing in Spain. Int J Water Res Dev 21:31–41. https://doi.org/10.1080/0790062042000316802

    Article  Google Scholar 

  29. Falkenmark M, Rockström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Plan Manag 132:129–132. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129)

    Article  Google Scholar 

  30. Fernández González P (2015) Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index. Appl Energy 137:364–374. https://doi.org/10.1016/j.apenergy.2014.10.020

    Article  Google Scholar 

  31. Fernández González P, Landajo M, Presno MJ (2014) Multilevel LMDI decomposition of changes in aggregate energy consumption a cross country analysis in the EU-27. Energy Policy 68:576–584. https://doi.org/10.1016/jenpol201312065

    Article  Google Scholar 

  32. Fernández E, Pinilla V (2018) Spain. In: Anderson K, Pinilla V (eds) Wine globalization: a new comparative history. Cambridge University Press, New York, pp 208–238

    Google Scholar 

  33. Food and Agriculture Organization (FAO) (2017) FAOSTAT database collections. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  34. Gardner B (1996) European agriculture: policies, production and trade. Routledge, London

    Google Scholar 

  35. Garrido A, Llamas MR, Varela-Ortega C, Novo P, Rodríguez-Casado R, Aldaya MM (2010) Water footprint and virtual water trade in Spain: policy implications, natural resource management and policy. Springer- Fundación Marcelino Botín, New York

    Google Scholar 

  36. Gleick PH (2000) A look at twenty-first century water resources development. Water Int 25:127–138. https://doi.org/10.1080/02508060008686804

    Article  Google Scholar 

  37. Gómez Benito C, González Rodríguez JJ (1997) Agricultura y sociedad en la España contemporánea. Ministerio de Agricultura, Pesca y Alimentación. Centro de Investigaciones Sociológicas, Madrid

    Google Scholar 

  38. González de Molina M (2001) Condicionamientos ambientales del crecimiento agrario español (siglos XIX y XX). In: Pujol-Andreu J, Gónzalez de Molina M, Fernández-Prieto L, Gallego D, Garrabou R (eds) El Pozo de Todos Los Males: Sobre El Atraso de La Agricultura Española Contemporánea. Crítica, Barcelona

    Google Scholar 

  39. González-Gómez F, García-Rubio MA, Guardiola J (2012) Introduction: water policy and management in Spain. Int J Water Resour Dev 28:3–11. https://doi.org/10.1080/07900627.2012.640604

    Article  Google Scholar 

  40. Hernández-Armenteros S, Rubio-Mondéjar JA, Garrués-Irurzun J (2016) A un panal de rica miel...: Empresas y empresarios en la exportación de aceite de oliva andaluz, 1886–1936. Hist Agraria 70:73–100

    Google Scholar 

  41. Herranz A (1995) La construcción de pantanos y su impacto sobre la economía y población del Pirineo aragonés. In: Acín JL, Pinilla V (eds) Pueblos Abandonados. ¿Un Mundo Perdido? Rolde de Estudios Aragoneses, Zaragoza, pp 79–102

    Google Scholar 

  42. Herranz A (2004) La dotación de infraestructuras en España, 1844–1935. Banco de España, Colección Estudios de Historia Económica, Madrid

    Google Scholar 

  43. Hoekstra AY, Chapagain AK, Aldaya M, Mekonnen MM (2009) Water footprint manual: state of the art 2009. Water Footprint Network, Enschede

    Google Scholar 

  44. Hoekstra AY, Chapagain AK, Aldaya M, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London, UK

    Google Scholar 

  45. Infante-Amate J (2012a) «Cuántos siglos de aceituna». El carácter de la expansión olivarera en el sur de España (1750–1900). Hist Agrar 58:39–72

    Google Scholar 

  46. Infante-Amate J (2012b) The ecology and history of the Mediterranean olive grove: the Spanish great expansion, 1750–2000. Rural Hist 23:161–184. https://doi.org/10.1017/S0956793312000052

    Article  Google Scholar 

  47. Jun D, Ming W (2010) Energy performance index based on LMDI technique and decomposition analysis of Beijing’s energy consumption. In: 2010 International Conference on Future Information Technology and Management Engineering, Changzhou, pp 246–249. https://doi.org/10.1109/FITME.2010.5654903 

  48. Konar M, Hussein Z, Hanasaki N, Mauzerall DL, Rodriguez-Iturbe I (2013) Virtual water trade flows and savings under climate change. Hydrol Earth Syst Sci 17:3219–3234. https://doi.org/10.5194/hess-17-3219-2013

    Article  Google Scholar 

  49. Kurniawan R, Sugiawan Y, Managi S (2018) Cleaner energy conversion and household emission decomposition analysis in Indonesia. J Clean Prod 201:334–342. https://doi.org/10.1016/j.jclepro.2018.08.051

    Article  Google Scholar 

  50. Lecina S, Isidoro D, Playán E, Aragüés R (2010) Irrigation modernization in Spain: effects on water quantity and quality – a conceptual approach. Int J Water Res Dev 26:265–282. https://doi.org/10.1080/07900621003655734

    Article  Google Scholar 

  51. Liu N, Ma Z, Kang J (2015) Changes in carbon intensity in China’s industrial sector: decomposition and attribution analysis. Energy Policy 87:28–38. https://doi.org/10.1016/j.enpol.2015.08.035

    Article  CAS  Google Scholar 

  52. Llamas MR, De Stefano L, Aldaya M, Custodio E, Garrido A, López-Gunn E, Willaarts B (2012) Introduction. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle? - contents. Taylor & Francis Group, London

    Google Scholar 

  53. López-Gálvez, J., Losada, A., 1999. Evolución de técnicas de riego en el sudeste de España, in: Garrabou, R., Naredo, J.M. (Eds.), El Agua En Los Sistemas Agrarios. Una Perspectiva Histórica. Fundación Argentaria, Madrid

  54. López-Gunn E (2009) Agua para todos: a new regionalist hydraulic paradigm in Spain. Water Altern 2:370–394

    Google Scholar 

  55. Ma C (2014) A multi-fuel, multi-sector and multi-region approach to index decomposition: an application to China’s energy consumption 1995–2010. Energy Econ 42:9–16. https://doi.org/10.1016/j.eneco.2013.11.009

    Article  Google Scholar 

  56. MAPAMA (1955) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, Madrid 

  57. MAPAMA (1980) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, Madrid

  58. MAPAMA (2005) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, Madrid

  59. MAPAMA (2010) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, Madrid

  60. Martinez-Cortina L, Garrido A, Lopez-Gunn E (2010) Re-thinking water and food security: fourth Botin Foundation water workshop. CRC Press, London

  61. Martinez-Santos P, Aldaya MM, Llamas MR (2014) Integrated water resources management in the 21st century: revisiting the paradigm. Taylor & Francis Group, London. https://doi.org/10.1007/978-94-007-4756-2

    Google Scholar 

  62. Martín-Retortillo M, Pinilla V (2015) Patterns and causes of the growth of European agricultural production, 1950 to 2005. Agric Hist Rev 63:132–159

    Google Scholar 

  63. Mekonnen M, Hoekstra A (2011) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 15:1577–1600. https://doi.org/10.5194/hess-15-1577-2011

    Article  Google Scholar 

  64. Moratilla FE, Moreno MM, Barrena MF (2010) La Huella Hídrica en España. Rev Obras Públicas: Órgano Prof Los Ing Caminos, Canales Puertos 3514:21–38

    Google Scholar 

  65. Nicklow J, Reed P, Savic D, Dessalegne T, Harrel L, Chan-Hilton A, Karamouz M, Minsker B, Ostfeld A, Singh A, Zechman E (2010) State of the art for genetic algorithms and beyond in water resources planning and management. J Water Resour Plan Manag 136:412–432. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000053

    Article  Google Scholar 

  66. OECD (2010) Sustainable management of water resources in agriculture. Organisation for Economic Co-operation and Development (OECD). https://doi.org/10.1787/9789264083578-en

  67. Olanrewaju OA (2018) Energy consumption in south African industry: a decomposition analysis using the LMDI approach. Energy Environ 29(2):232–244. https://doi.org/10.1177/0958305X17745364

    Article  Google Scholar 

  68. Pimentel D, Houser J, Preiss E, White O, Fang H, Mesnick L, Barsky T, Tariche S, Schreck J, Alpert S (1997) Water resources: agriculture, the environment, and society. Bioscience 47:97–106. https://doi.org/10.2307/1313020

    Article  Google Scholar 

  69. Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. Bioscience 54:909–918. https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2

  70. Pinilla V (2006) The development of irrigated agriculture in twentieth-century Spain: a case study of the Ebro basin. Agric Hist Rev 54:122–141

    Google Scholar 

  71. Pinilla V (2008) Gestión y usos del agua en el siglo XX. Un estudio de caso: la Cuenca del Ebro. In: Pinilla V (ed) Gestión Y Usos Del Agua En La Cuenca Del Ebro En El Siglo XX. Prensas Universitarias de Zaragoza, Zaragoza, pp 9–35

    Google Scholar 

  72. Pinilla V, Ayuda M-I (2010) Taking advantage of globalization? Spain and the building of the international market in Mediterranean horticultural products, 1850–1935. Eur Rev Econ Hist 14:239–274. https://doi.org/10.1017/S136149161000002X

    Article  Google Scholar 

  73. Piqueras J (1985) La agricultura valenciana de exportación y su formación histórica. Instituto de Estudios Agrarios, pesqueros y Alimentarios, Madrid

  74. Prat N, Ibañez C (1995) Effects of water transfers projected in the Spanish National Hydrological Plan on the ecology of the lower river Ebro (N.E. Spain) and its delta. Water Sci Technol 31:79–86. https://doi.org/10.2166/wst.1995.0268

    Article  CAS  Google Scholar 

  75. Pujol-Andreu J (2011) Wheat varieties and technological change in Europe, 19th and 20th centuries: new issues in economic history. Hist Agrar 54:71–103

    Google Scholar 

  76. Reig Martínez, E., Picazo Tadeo, A., 2002. La agricultura española: crecimiento y productividad. Caja de Ahorros del Mediterráneo, Alicante

  77. Salmoral G, Chico D (2013) Lessons learnt from analyses of water footprint of tomatoes and olive oil in Spain. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle? CRC Press, London

  78. Santiago-Caballero C (2013) Trapped by nature: provincial grain yields in Spain in the mid 18th century. Rev Hist Econ– J Iber Lat Am Econ Hist 31:359–386. https://doi.org/10.1017/s0212610913000165

    Article  Google Scholar 

  79. Serrano R, García-Casarejos N, Gil-Pareja S, Llorca-Vivero R, Pinilla V, (2015) The internationalisation of the Spanish food industry: the home market effect and European market integration. Spanish J Agric Res 13. https://doi.org/10.5424/sjar/2015133-7501

  80. Shabbir A, Arshad M, Bakhsh A, Usman M, Shakoor A, Ahmad I, Ahmad A (2012) Apparent and real water productivity for cotton-wheat zone of Punjab, Pakistan. Pakistan J Agric Sci 49:357–363

  81. Vörösmarty CJ, Hoekstra AY, Bunn SE, Conway D, Gupta J (2015) Fresh water goes global. Science 349:478–479. https://doi.org/10.1126/science.aac6009

    Article  Google Scholar 

  82. Wang M, Feng C (2017) Decomposition of energy-related CO2 emissions in China: an empirical analysis based on provincial panel data of three sectors. Appl Energy 190:772–787. https://doi.org/10.1016/j.apenergy.2017.01.007

    Article  Google Scholar 

  83. Wang X, Huang K, Yu Y, Hu T, Xu Y (2016) An input-output structural decomposition analysis of changes in sectoral water footprint in China. Ecol Indic 69:26–34. https://doi.org/10.1016/j.ecolind.2016.03.029

    Article  Google Scholar 

  84. Wang H, Ang BW, Su B (2017) Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy 107:585–599. https://doi.org/10.1016/j.enpol.2017.05.034

    Article  Google Scholar 

  85. Wang Y, Lu J, Hao X (2018) Research on energy consumption of Beijing transportation industry based on LMDI method. IOP Conf Ser Earth Environ Sci 170:32009

    Article  Google Scholar 

  86. Zhang S, Su X, Singh VP, Ayantobo OO, Xie J (2018) Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China. Agric Water Manag 208:422–430. https://doi.org/10.1016/j.agwat.2018.06.041

    Article  Google Scholar 

  87. Zhao X, Tillotson MR, Liu YW, Guo W, Yang AH, Li YF (2017) Index decomposition analysis of urban crop water footprint. Ecol Model 348:25–32. https://doi.org/10.1016/j.ecolmodel.2017.01.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatfully acknowledge the financial support from the Ramón Areces Foundation, grant CISP15A3198. Miguel Martín-Retortillo belongs to the Reference Group of the Department of Science, Technology and Universities of the Government of Aragon “S55_17R” and to the project ECO2015-65582 from the Ministry of Science and Innovation of Spain. Ignacio Cazcarro and Ana Serrano are members of the Reference Group of the Department of Science, Technology and Universities of the Government of Aragon “S40_17R” and of the project ECO2016‐74940-P from the Ministry of Science and Innovation of Spain. The authors are grateful for the detailed and helpful comments of Prof. Vicente Pinilla and for those received from the participants at the 12th conference of the European Society for Ecological Economics (June 2017) and the 5th Annual Agricultural History Seminar (December 2017).

Funding

This study has exclusively received funding from the Ramón Areces Foundation, grant CISP15A3198 (XV National Contest for Research in Social Sciences).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Serrano.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor: Wolfgang Cramer

Electronic supplementary material

ESM 1

(DOCX 1153 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cazcarro, I., Martín-Retortillo, M. & Serrano, A. Reallocating regional water apparent productivity in the long term: methodological contributions and application for Spain. Reg Environ Change 19, 1455–1468 (2019). https://doi.org/10.1007/s10113-019-01485-9

Download citation

Keywords

  • Water
  • Agriculture
  • Water apparent productivity
  • Spain
  • Regional analysis