Skip to main content

Advertisement

Log in

The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The Hyrcanian climate in the northern parts of Iran has warmed over the past 50 years, but the impacts on plant species are unknown. As the longest-lived tree in the Hyrcanian forest, English yew, Taxus baccata L., is a rare and endangered species in the forests along the Iranian coasts of the Caspian Sea, which is likely affected by climate change. This paper explores the current and future distribution of this species, using four species distribution models. In order to project the effect of climate change on the distribution of English yew by 2050 and 2070, output from the HadGEM2-ES climate model was used for two RCPs scenarios (2.6 and 8.5). The results showed a good accuracy of all the models for the distribution of this species with a mean area under the receiver operating curve (AUC) of 0.92. Using ensemble forecasting as an algorithm for reducing the uncertainty in species distribution modeling shows that the suitable habitats for this species is about 6000 km2 for the current climate conditions in the study area. Range size analysis indicates that in 2050, in the most optimistic scenario (RCP 2.6), only 17% of the habitats will retain their suitability, while in the most pessimistic scenario (RCP 8.5), this amount will decrease to 2%. In 2070, in the most optimistic scenario, only 10% of the currently suitable habitats will retain their suitability, while in the RCP 8.5, no stable suitable habitats will be left. It is strongly recommended that the impacts of climate change on English yew should be considered in the management decisions and conservation plans in the Hyrcanian forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007

    Article  Google Scholar 

  • Aguirre-Gutiérrez J, Carvalheiro LG, Polce C, van Loon EE, Raes N, Reemer M, Biesmeijer JC (2013) Fit-for-purpose: species distribution model performance depends on evaluation criteria–Dutch hoverflies as a case study. PLoS One 8(5):e63708. https://doi.org/10.1371/journal.pone.0063708

    Article  CAS  Google Scholar 

  • Ahmadi K, Alavi SJ, Tabari Kouchaksaraei M, Aertsen W (2013) Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests, Iran. Biotechnol Agron Soc Environ 17:431–440

    Google Scholar 

  • Akhani H, Djamali M, Ghorbanalizadeh A, Ramezani E (2010) Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pak J Bot 42:231–258

    Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. https://doi.org/10.1016/j.tree.2006.09.010

    Article  Google Scholar 

  • Attarod P, Kheirkhah F, Khalighi Sigaroodi S, Sadeghi SMM, Dolatshahi A, Bayramzadeh V (2017) Trend analysis of meteorological parameters and reference evapotranspiration in the Caspian region. Iranian Journal of Forest 9:171–185 (in Persian)

    Google Scholar 

  • Babaeian I, Najafi Nik Z, Zabol Abbasi F, Habeibei M, Adab H, malbisei S (2010) Estimation of climate change during the period of 2010-2039 in Iran using downscaled data of the general circulation model ECHO-G. Geography and Development 7:135–152 (in Persian)

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L (2017) Classification and regression trees. Routledge, 358p

  • Chala D, Brochmann C, Psomas A, Ehrich D, Gizaw A, Masao CA, Zimmermann NE (2016) Good-bye to tropical alpine plant giants under warmer climates? Loss of range and genetic diversity in Lobelia rhynchopetalum. Ecol Evol 6:8931–8941. https://doi.org/10.1002/ece3.2603

    Article  Google Scholar 

  • Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, Thuiller W (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544. https://doi.org/10.1111/j.1461-0248.2012.01764.x

    Article  Google Scholar 

  • Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science (80- ) 331:324–327. https://doi.org/10.1126/science.1199040

    Article  CAS  Google Scholar 

  • Dunk JR, Zielinski WJ, Preisler HK (2004) Predicting the occurrence of rare mollusks in northern California forests. Ecol Appl 14:713–729

    Article  Google Scholar 

  • Duque-Lazo J, van Gils H, Groen TAA, Navarro-Cerrillo RM (2016) Transferability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. For Ecol Manag 106:62–70. https://doi.org/10.1016/j.ecolmodel.2015.09.019

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography (Cop) 32:66–77. https://doi.org/10.1111/j.1600-0587.2008.05505.x

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W, ullinger S, Zimmermann NE, Araújo MB, Choler P (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17:2330–2341

    Article  Google Scholar 

  • Fatemi Azarkhavarani SS, Rahimi M, Tarkesh M, Ravanbakhsh H (2017) Prediction of Juniperus excelsa M.Bieb. Geographical distribution using by climate data under the conditions of current and future in Semnan Province. Iranian Journal of Forest 9:233–248 (in Persian)

    Google Scholar 

  • Fourcade Y, Engler JO, Besnard AG, Rödder D, Secondi J (2013) Confronting expert-based and modelled distributions for species with uncertain conservation status: a case study from the corncrake (Crex crex). Biol Conserv 167:161–171. https://doi.org/10.1016/j.biocon.2013.08.009

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press

  • Freeman EA, Moisen G (2008) Presence Absence: an R package for presence absence analysis. J Stat Software 23 31 p

  • Gallardo B, Aldridge DC (2013) Evaluating the combined threat of climate change and biological invasions on endangered species. Biol Conserv 160:225–233. https://doi.org/10.1016/j.biocon.2013.02.001

    Article  Google Scholar 

  • Gelviz-Gelvez SM, Pavón NP, Illoldi-Rangel P, Ballesteros-Barrera C (2015) Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecol Eng 74:302–309. https://doi.org/10.1016/j.ecoleng.2014.09.082

    Article  Google Scholar 

  • Guisan A, Theurillat J-P (2001) Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr Assess 1:307–320. https://doi.org/10.1023/A:1018912114948

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann N (2017) Habitat suitability and distribution models - with applications in R

  • Guo C, Lek S, Ye S, Li W, Liu J, Li Z (2015) Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques. Ecol Model 306:67–75. https://doi.org/10.1016/j.ecolmodel.2014.08.002

    Article  Google Scholar 

  • Haidarian Aghakhani M, Tamartash R, Jafarian Z, Tarkesh M, Tatian MR (2017) Predicting the impacts of climate change on Persian oak (Quercus brantii) using species distribution modelling in central Zagros for conservation planning. Journal of Environmental Studies 43:497–511. https://doi.org/10.22059/jes.2017.233756.1007441 (in Persian)

    Article  Google Scholar 

  • Harrell Jr FE (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer

  • Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science (80- ) 267:876–880. https://doi.org/10.1126/science.267.5199.876

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability

  • Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography (Cop) 35:276–288

    Article  Google Scholar 

  • Hijmans RJ, Elith J (2013) Species distribution modeling with R. R Packag version 08-11

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo.’ Circles 9:

  • Hof AR, Jansson R, Nilsson C (2012) The usefulness of elevation as a predictor variable in species distribution modelling. Ecol Model 246:86–90. https://doi.org/10.1016/j.ecolmodel.2012.07.028

    Article  Google Scholar 

  • IPCC (2007) Mitigation of climate change: contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Intergov Panel Clim Chang 10:851. https://www.ipcc.ch/publications_and_data/.htm

  • Jafari M (2008) Investigation and analysis of climate change factors in Caspian Zone forests for last fifty years. Iranian Journal of Forest and Poplar Research 16:314–326 (in Persian)

    Google Scholar 

  • Koo KA, Madden M, Patten BC (2014) Projection of red spruce (Picea rubens Sargent) habitat suitability and distribution in the Southern Appalachian Mountains, USA. Ecol Model 293:91–101. https://doi.org/10.1016/j.ecolmodel.2014.06.005

    Article  Google Scholar 

  • Koralewski TE, Wang HH, Grant WE, Byram TD (2015) Plants on the move: assisted migration of forest trees in the face of climate change. For Ecol Manag 344:30–37. https://doi.org/10.1016/j.foreco.2015.02.014

    Article  Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222. https://doi.org/10.1016/j.foreco.2009.12.023

    Article  Google Scholar 

  • Kumar S, Spaulding SA, Stohlgren TJ, Hermann KA, Schmidt TS, Bahls LL (2009) Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Front Ecol Environ 7:415–420. https://doi.org/10.1890/080054

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  • Laughlin DC, Fulé PZ, Huffman DW, Crouse J, Laliberté E (2011) Climatic constraints on trait-based forest assembly. J Ecol 99:1489–1499. https://doi.org/10.1111/j.1365-2745.2011.01885.x

    Article  Google Scholar 

  • Lenoir J, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century, vol 320, pp 1768–1771

    Google Scholar 

  • Linares JC (2013) Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). For Ecol Manag 291:119–127. https://doi.org/10.1016/j.foreco.2012.11.009

    Article  Google Scholar 

  • Manzoor SA, Griffiths G, Lukac M (2018) Species distribution model transferability and model grain size-finer may not always be better. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-25437-1

    Article  CAS  Google Scholar 

  • Marvie Mohadjer MR (2005) Silviculture. University of Tehran. (in Persian)

  • McCullagh P, Nelder JA (1989) Generalized linear models. CRC press

  • Moradi H, Naqinezhad A, Siadati S, Yousefi Y, Attar F, Etemad V, Reif A (2016) Elevational gradient and vegetation-environmental relationships in the central Hyrcanian forests of northern Iran. Nord J Bot 34:1–14. https://doi.org/10.1111/njb.00535

    Article  Google Scholar 

  • Mossadegh A (1971) Stands of Taxus baccata in Iran. Revue forestière française 23(6):645–648

    Article  Google Scholar 

  • Naimi B (2015) Usdm: uncertainty analysis for species distribution models. R package version 1.1–15

  • Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st century. Glob Environ Chang 17:420–428. https://doi.org/10.1016/j.gloenvcha.2006.11.007

    Article  Google Scholar 

  • Noroozi J, Pauli H, Grabherr G, Breckle SW (2011) The subnival-nival vascular plant species of Iran: a unique high-mountain flora and its threat from climate warming. Biodivers Conserv 20:1319–1338. https://doi.org/10.1007/s10531-011-0029-9

    Article  Google Scholar 

  • Oladi R, Pourtahmasi K, Eckstein D, Bräuning A (2011) Seasonal dynamics of wood formation in Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest, Iran. Trees 25:425–433. https://doi.org/10.1007/s00468-010-0517-7

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Penuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140. https://doi.org/10.1046/j.1365-2486.2003.00566.x

    Article  Google Scholar 

  • Perrin PM, Mitchell FJG (2013) Effects of shade on growth, biomass allocation and leaf morphology in European yew (Taxus baccata L.). Eur J For Res 132:211–218. https://doi.org/10.1007/s10342-012-0668-8

    Article  CAS  Google Scholar 

  • Peterson AT, Azim NH, Subki A, Yusof ZNB (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136. https://doi.org/10.1111/2041-210X.12397

    Article  Google Scholar 

  • R Core Team (2018) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, 2015

  • Remya K, Ramachandran A, Jayakumar S (2015) Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. Using MaxEnt model in the Eastern Ghats, India. Ecol Eng 82:184–188. https://doi.org/10.1016/j.ecoleng.2015.04.053

    Article  Google Scholar 

  • Rouhi-Moghaddam E, Hosseini SM, Ebrahimi E, Tabari M, Rahmani A (2008) Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran. For Ecol Manag 255:1149–1160. https://doi.org/10.1016/j.foreco.2007.10.048

    Article  Google Scholar 

  • Ruprecht H, Dhar A, Aigner B, Oitzinger G, Klumpp R, Vacik H (2010) Structural diversity of English yew (Taxus baccata L.) populations. Eur J For Res 129:189–198. https://doi.org/10.1007/s10342-009-0312-4

    Article  Google Scholar 

  • Sagheb Talebi K, Sajedi T, Pourhashemi M (2016) Forests of Iran: a treasure from the past, a hope for the future. Springer

  • Scharnweber T, Rietschel M, Manthey M (2007) Degradation stages of the Hyrcanian forests in southern Azerbaijan. Arch Nat schutz Landsch forsch 46:133–156

    Google Scholar 

  • Schirone B, Ferreira RC, Vessella F, chirone A, Piredda R, Simeone MC (2010) Taxus baccata in the Azores: a relict form at risk of imminent extinction. Biodivers Conserv 19:1547–1565. https://doi.org/10.1007/s10531-010-9786-0

    Article  Google Scholar 

  • Scott JM, Heglund PJ, Morrison ML (2002) Predicting species occurrences: issues of scale and accuracy. Island press

  • Shirk AJ, Cushman SA, Waring KM, Wehenkel CA, Leal-Sáenz A, Toney C, Lopez-Sanchez CA (2018) Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. For Ecol Manag 411:176–186. https://doi.org/10.1016/j.foreco.2018.01.025

    Article  Google Scholar 

  • Sousa-Silva R, Alves P, Honrado J, Lomba A (2014) Improving the assessment and reporting on rare and endangered species through species distribution models. Glob Ecol Conserv 2:226–237. https://doi.org/10.1016/j.gecco.2014.09.011

    Article  Google Scholar 

  • Taleshi H, Jalali SG, Alavi SJ, Hosseini SM, Naimi B (2018) Climate change impacts on the distribution of oriental beech (Fagus orientalis Lipski) in the Hyrcanian forests of Iran. Iranian Journal of Forest 10:251–266 (in Persian)

    Google Scholar 

  • Taylor S, Kumar L (2013) Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. J Environ Manag 114:414–422. https://doi.org/10.1016/j.jenvman.2012.10.039

    Article  Google Scholar 

  • Thomas PA, Garcia-Martí X (2015) Response of European yews to climate change: a review. For Syst 24:1–11. https://doi.org/10.5424/fs/2015243-07465

    Article  Google Scholar 

  • Thuiller W (2007) Climate change and the ecologist. Nature 448:550–552. https://doi.org/10.1038/448550a

    Article  CAS  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F (2016) Biomod2: ensemble platform for species distribution modeling. R package version 3.3–7

  • Vieilledent G, Cornu C, Cuní Sanchez A, Pock-Tsy JML, Danthu P (2013) Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: towards new conservation priorities. Biol Conserv 166:11–22. https://doi.org/10.1016/j.biocon.2013.06.007

    Article  Google Scholar 

  • Wang H, mei SX, Jiang Y, Fang XQ, Wu SH (2013) The impacts of climate change on the radial growth of Pinus koraiensis along elevations of Changbai Mountain in northeastern China. For Ecol Manag 289:333–340. https://doi.org/10.1016/j.foreco.2012.10.023

    Article  Google Scholar 

  • Wang J, Wang H, Cao Y, Bai Z, Qin Q (2016) Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Sci Rep 6:1–11. https://doi.org/10.1038/srep22058

    Article  CAS  Google Scholar 

  • Watling JI, Brandt LA, Bucklin DN, Fujisaki I, Mazzotti FJ, Romañach SS, Speroterra C (2015) Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol Model 309–310:48–59. https://doi.org/10.1016/j.ecolmodel.2015.03.017

    Article  CAS  Google Scholar 

  • Yousefpour R, Temperli C, Jacobsen JB, Thorsen BJ, Meilby H, Lexer M, Ray D (2017) A framework for modeling adaptive forest management and decision making under climate change. Ecol Soc 22:. https://doi.org/10.5751/ES-09614-220440

  • Yun JH, Nakao K, Tsuyama I, Matsui T, Park CH, Lee BY, Tanaka N (2018) Vulnerability of subalpine fir species to climate change: using species distribution modeling to assess the future efficiency of current protected areas in the Korean Peninsula. Ecol Res 33:341–350. https://doi.org/10.1007/s11284-018-1581-5

    Article  Google Scholar 

  • Zare H (2001) Introduced and native conifers in Iran. Research Institute of Forest and Rangelands Press, Tehran. (in Persian)

  • Zhang Z, Capinha C, Weterings R, McLay CL, Xi D, Lü H, Yu L (2018) Ensemble forecasting of the global potential distribution of the invasive Chinese mitten crab, Eriocheir sinensis. Hydrobiologia 0123456789. https://doi.org/10.1007/s10750-018-3749-y

Download references

Acknowledgements

We acknowledge the efforts by Prof. Jafar Seyfabadi for carefully going through the manuscript. Thanks also go to Ghasemali Parad, Younes Geravand, Salman Zalekani, and Kambiz Ahmadi for field data sampling.

Funding

The research leading to these results has received funding from the Iran National Science Foundation (INSF) under grant agreement no 95826133 (project title: “ecological niche of endangered species (Taxus baccata L.) and effect of climate change on its distribution in Hyrcanian forest (north of Iran)”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jalil Alavi.

Additional information

Editor:Wolfgang Cramer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.J., Ahmadi, K., Hosseini, S.M. et al. The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Reg Environ Change 19, 1495–1506 (2019). https://doi.org/10.1007/s10113-019-01483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-019-01483-x

Keywords

Navigation