Regional Environmental Change

, Volume 19, Issue 5, pp 1353–1369 | Cite as

Socio-ecological dimensions of Andean pastoral landscape change: bridging traditional ecological knowledge and satellite image analysis in Sajama National Park, Bolivia

  • Karina YagerEmail author
  • Corinne Valdivia
  • Daniel Slayback
  • Elizabeth Jimenez
  • Rosa Isela Meneses
  • Arely Palabral
  • Mary Bracho
  • Daniela Romero
  • Alfred Hubbard
  • Paula Pacheco
  • Alan Calle
  • Humber Alberto
  • Olga Yana
  • Daniela Ulloa
  • Gabriel Zeballos
  • Alejandro Romero
Original Article


In the Andes, indigenous pastoral communities are confronting new challenges in managing mountain peatland pastures, locally called bofedales. Assessing land cover change using satellite images, vegetation survey, and local knowledge (i.e., traditional ecological knowledge) reveals the multi-faceted socio-ecological dimensions of bofedal change in Sajama National Park (PNS), Bolivia. Here, we present results from focus groups held in 2016 and 2017 to learn about the local knowledge of bofedales in five Aymara communities in PNS. Land cover maps, created from Landsat satellite imagery, provided a baseline reference of the decadal change of bofedales (1986, 1996, 2006, and 2016) and were field verified with vegetation sampling. At the park level, the land cover maps show a reduction of healthy bofedales (i.e., Juncaceae dominated peatland) cover from 33.8 km2 in 1986 to 21.7 km2 in 2016, and an increase in dry mixed grasses (e.g., Poaceae dominated land cover) from 5.1 km2 (1986) to 20.3 km2 (2016). Locals identify climate change, lack of irrigation, difficulty in water access, and loss of communal water management practices as key bofedal management challenges. Local improvement of bofedales was found in one community due to community-based irrigation efforts. Bridging knowledge of mountain land cover change helps to articulate the socio-ecological dimensions that influence local decision-making regarding bofedal management, and consideration of local actions that may be strengthened to support the sustainability of bofedales for local livelihoods in the context of climate change in the Andes.


Bofedales Traditional ecological knowledge Andes Pastoralism Mountain climate change Land cover change 



We thank the communities of Sajama National Park, SERNAP, Herbario Nacional de Bolivia, IGEMA, and Victor Mamani. We are indebted to anonymous reviewers for their helpful suggestions.

Funding Information

Research supported by NASA LCLUC, ROSES 13-LCLUC13-2-0046. Contributing support by CONICYT (PAI-MEC # 80160087) and Center for Indigenous and Intercultural Research, FONDAP No. 15110006.

Supplementary material

10113_2019_1466_MOESM1_ESM.pdf (2.2 mb)
ESM 1 (PDF 2.24 MB)
10113_2019_1466_MOESM2_ESM.pdf (63 kb)
ESM 2 (PDF 63 kb)
10113_2019_1466_MOESM3_ESM.pdf (58 kb)
ESM 3 (PDF 57.5 kb)


  1. Adler C, Hirsch Hadorn G, Breu T, Wiesmann U, Pohl C (2018) Conceptualizing the transfer of knowledge across cases in transdisciplinary research. Sustain Sci 13:179.
  2. Agua Sustentable (2013) Plan de Adaptación al Cambio Climático del Parque Nacional Sajama. Nordic Development Fund, Diakonia and Christian Aid, La PazGoogle Scholar
  3. Alzérreca H, Laura J, Loza F, Luna D, Ortega J (2007) Importance of carrying capacity in sustainable management of key high-Andean puna rangelands (Bofedales) in Ulla Ulla, Bolivia. In: Spehn E, Liberman M, Körner C (eds) Land use change and mountain biodiversity. Taylor & Francis, Boca Raton, pp 167–185Google Scholar
  4. Ansaloni F, Pyszny F, Marquina R, Claros Liendo A, Claros Goitia A, Quispe Huanca JL, Zapana Pineda JL (2013) Income analysis in South American domestic camelid farms. Bio-based and Applied Economics 2(2):173–189Google Scholar
  5. Aranda Pardo I, García M, Aparicio M, Cabrera M (2007) Mecanismo Nacional de Adaptación al cambio Climático. Programa Nacional de Cambio Climático. Ministerio de Planificación del Desarrollo, La PazGoogle Scholar
  6. Baied C, Wheeler J (1993) Evolution of high Andean puna ecosystems: environment, climate, and cultural change over the last 12,000 years in the Central Andes. Mt Res Dev 13(2):145–156. Google Scholar
  7. Baraer M, Mark B, McKenzie J, Condom T, Bury J, Huh KI, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150. Google Scholar
  8. Beck S, Domic A, Garcia C, Meneses RI, Yager K, Halloy S (2010) El Parque Nacional Sajama y sus Plantas. La Paz, Herbario Nacional de Bolivia-Fundacion PUMAGoogle Scholar
  9. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31. Google Scholar
  10. Berkes F (1993) Traditional ecological knowledge in perspective. In: Inglis J (ed) Traditional ecological knowledge: concepts and cases. International Program on Traditional Ecological Knowledge and International Development Research Center, Ottawa, pp 1–9Google Scholar
  11. Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10(5):1251–1262.[1251:ROTEKA]2.0.CO;2Google Scholar
  12. Boone RB, Hobbs NT (2004) Lines around fragments: effects of fragmentation on large herbivores. Afr J Range Forage Sci 21:79–90. Google Scholar
  13. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. Google Scholar
  14. Browman D (1987) Arid land use strategies and risk management in the Andes: a regional anthropological perspective. Westview Press, Boulder and LondonGoogle Scholar
  15. Browman D (1989) Origins and development of Andean pastoralism: an overview of the past 6000 years. In: Clutton-Brock J (ed) The walking larder: patterns of domestication, pastoralism, and predation. Unwin Hyman, London, pp 257–268Google Scholar
  16. Bürgi M, Gimmi U, Stuber M (2013) Assessing traditional knowledge on forest uses to understand forest ecosystem dynamics. For Ecol Manag 289:115–122. Google Scholar
  17. Bury J, Bryan GM, Carey M, Young K, McKenzie J, Baraer M, French A, Polk M (2013) New geographies of water and climate change in Peru: coupled natural and social transformations in the Santa River watershed. Ann Assoc Am Geogr 103(2):363–374. Google Scholar
  18. Capriles J, Tripcevich N (2016) The archaeology of Andean pastoralism. University of New Mexico Press, AlbuquerqueGoogle Scholar
  19. Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Chang 11(Suppl 1):S179–S187. Google Scholar
  20. Chimner RA, Karberg JM (2008) Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires and Peat 3: Art. 4. Accessed 19 Jan 2019
  21. Cooper DJ, Wolf EC, Colson C, Vering W, Granda A, Meyer M (2010) Alpine peatlands of the Andes, Cajamarca, Peru. Arct Antarct Alp Res 42(1):19–33. Google Scholar
  22. Cooper D, Kaczynski K, Slayback D, Yager K (2015) Growth and organic production in peatlands dominated by Distichia muscoides, Bolivia. Arct Antarct Alp Res 47(3):505–510. Google Scholar
  23. Cooper D, Sueltenfuss J, Yager K, Slayback D, Caballero M, Argollo J, Mark B (in review) Evaluating Andean peatland hydrology: predominance of hillslope groundwater contributionsGoogle Scholar
  24. Coppock L, Valdivia C (2001) Sustaining agropastoralism on the Bolivian Altiplano: the case of San José Llanga. Logan, Department of Range SciencesGoogle Scholar
  25. Coppock DL, Fernández-Giménez M, Hiernaux P, Huber-Sannwald E, Schloeder C, Valdivia C, Arredondo JT, Jacobs M, Turin C, Turner M (2017) Rangelands in developing nations: conceptual advances and societal implications. In: Briske D (ed) Rangeland systems: processes, management and challenges. Springer, Cham, pp 596–642. Google Scholar
  26. Cowie AL, Orr BJ, Castillo Sanchez VM, Chasek P, Crossman ND, Erlewein A, Louwagie G, Maron M, Metternicht GI, Minelli S, Tengberg AE, Walter S, Welton S (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Pol 79:25–35. Google Scholar
  27. Cruikshank J (2005) Do glaciers listen? Local knowledge, colonial encounters, and social imagination. UBC Press, VancouverGoogle Scholar
  28. Cruikshank J (2012) Are glaciers ‘good to think with’? Recognising indigenous environmental knowledge. Anthropol Forum 22(3):239–250. Google Scholar
  29. Crumley C (1994) Historical ecology: cultural knowledge and changing landscapes. School of American Research Press, Santa FeGoogle Scholar
  30. Dalle SP, de Blois S, Caballero J, Johns T (2006) Integrating analyses of local land-use regulations, cultural perceptions and land-use/land cover data for assessing the success of community-based conservation. For Ecol Manag 222(1):370–383. Google Scholar
  31. Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017) Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS One 12(5):e0175814. Google Scholar
  32. Diaz H, Bradley R, Ning L (2014) Climatic changes in mountain regions of the American cordillera and the tropics: historical changes and future outlook. Arct Antarct Alp Res 46(4):735–743. Google Scholar
  33. Dieye AM, Roy DP (2012) A study of rural Senegalese attitudes and perceptions of their behavior to changes in the climate. Environ Manag 50:929–941. Google Scholar
  34. Dove M (ed) (2014) The anthropology of climate change: an historical reader. Wiley-Blackwell, West SussexGoogle Scholar
  35. Dove M, Kammen D (2015) Science, society and the environment: applying anthropology and physics to sustainability. Routledge, AbingdonGoogle Scholar
  36. Earle L, Warner B, Aravena R (2003) Rapid development of an unusual peat-accumulating ecosystem in the Chilean Altiplano. Quat Res 59(1):2–11. Google Scholar
  37. Easdale MH (2016) Zero net livelihood degradation—the quest for a multidimensional protocol to combat desertification. Soil 2016(2):129–134. Google Scholar
  38. Eden M, Parry J (1996) Land degradation in the tropics: environmental and policy issues. Pinter, New YorkGoogle Scholar
  39. Ellis JE, Swift DM (1988) Stability of African pastoral ecosystems: alternate paradigms and implications for development. Rangel Ecol Manag 41(6):450–459. Accessed 06 June 2019
  40. Emery M, Flora C (2006) Spiraling-up: mapping community transformation with community capitals framework. Community Development 37(1):19–35.
  41. Erickson C (2000) The Lake Titicaca basin: a pre-Columbian built landscape. In: Lentz D (ed) Imperfect balance: landscape transformations in the Precolumbian Americas. Columbia University Press, New York, pp 311–356Google Scholar
  42. Fairhead and Leach (1996) Misreading the African landscape: society and ecology in a forest-savanna mosaic. Cambridge University Press, CambridgeGoogle Scholar
  43. Flores-Ochoa J (1977) Pastores de Puna: Uywamichiq Punarunakuna. Instituto de Estudios Peruanos, LimaGoogle Scholar
  44. Gharibvand HK, Azadi H, Witlox F (2015) Exploring appropriate livelihood alternatives for sustainable rangeland management. Rangel J 37:345–356. Google Scholar
  45. Gilles J, Thomas J, Valdivia C, Yucra Sea E (2013) Where are the laggards? Conservers of traditional knowledge in Bolivia. Rural Sociol 78(1):51–74. Google Scholar
  46. Gómez-Baggethun E, Corbera E, Reyes-García V (2013) Traditional ecological knowledge and global environmental change: research findings and policy implications. Ecol Soc 18(4):72.
  47. Grainger A (2015) Is land degradation neutrality feasible in dry areas? J Arid Environ 112:14–24. Google Scholar
  48. Guillet D (1992) Covering ground: communal water management and the state in the peruvian highlands. The University of Michigan Press, Ann ArborGoogle Scholar
  49. Hardy DR, Vuille M, Bradley R (2003) Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. J Geophys Res 108:46–93. Google Scholar
  50. Hobbs NT, Galvin KA, Stokes CJ, Lackett JM, Ash AJ, Boone RB, Reid RS, Thornton PK (2008) Fragmentation of rangelands: implications for humans, animals, and landscapes. Glob Environ Chang 18:776–785.
  51. Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951. Google Scholar
  52. Hoffmann D (2007) The Sajama National Park in Bolivia: a model for cooperation among state and local authorities and the indigenous population. Mt Res Dev 27(1):11–14.[11:TSNPIB]2.0.CO;2Google Scholar
  53. Hribjlan JA, Cooper D, Sueltenfuss J, Wolf E, Heckman K, Lilleskov E, Chimner R (2015) Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires Peat 15(12):1–14. Google Scholar
  54. INE (Instituto Nacional de Estadística) (2017) Censo Agropecuario 2017 Bolivia. Instituto Nacional de Estadística. Estado Plurinacional de Bolivia, La Paz Accessed 19 Jan 2019
  55. Kitzinger J (1994) The methodology of focus groups: the importance of interaction between research participants. Sociol. Health Illn 16(1):103–121.
  56. MAPZ A (Proyecto Manejo de Areas Protegidas y Zonas de Amortiguacion) (2001) Caracterización de los sistemas de producción del Parque Nacional Sajama a partir de los estudios de caso y la caracterización comunal. SERNAP, MAPZA-GTZ, La PazGoogle Scholar
  57. Mark BG, French A, Baraer M, Carey M, Bury J, Young KR, Lautz L (2017) Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Chang 159:61–76. Google Scholar
  58. Mayer E (2002) The articulated peasant: household economies in the Andes. Westview Press, BoulderGoogle Scholar
  59. Meldrum G, Mijatović D, Rojas W, Flores J, Pinto M, Mamani G, Condori E, Hilaquita D, Gruberg H, Padulosi S (2018) Climate change and crop diversity: farmers’ perceptions and adaptation on the Bolivian Altiplano. Environ Dev Sustain 20(2):703–730. Google Scholar
  60. Meneses RI, Loza Herrera S, Lliully A, Palabral A, Anthelme F (2014) Métodos para cuantificar diversidad y productividad vegetal de los bofedales frente al cambio climático. Ecología en Bolivia 49(3):42–55. Accessed 06 June 2019
  61. Montaña E, Diaz HP, Hurlbert M (2016) Development, local livelihoods, and vulnerabilities to global environmental change in South American dry Andes. Reg Environ Chang 16:2215–2228. Google Scholar
  62. Moore K (2016) Early domesticated camelids in the Andes. In: Capriles J, Tripcevich N (eds) The Archaeology of Andean Pastoralism. Chapter 3. University of New Mexico Press, Albuquerque, pp 17–38Google Scholar
  63. Morlon P (1996) Comprender la agricultura campesina en los Andes Centrales, Perú y Bolivia. Instituto Francés de Estudios Andinos; Centro de Estudios Regionales Andinos, Bartolomé de las Casas, Lima and Cusco, PeruGoogle Scholar
  64. Orlove B (1977) Alpacas, sheep and men: the wool export economy and regional Society of Southern Perú. Academic Press, New YorkGoogle Scholar
  65. Orlove B, Chang J, Cane M (2000) Forecasting Andean rainfall and crop yield from the influence of Pleiades visibility. Nature 403:68–71. Google Scholar
  66. Orlove B, Wiegandt E, Luckman B (eds) (2008) Darkening peaks: glacier retreat, science, and society. University of California Press, BerkeleyGoogle Scholar
  67. Palacios-Ríos F (1996) Pastizales de regadío para alpacas en la puna alta (el ejemplo de Chichillapi). In: Morlon P (ed) Comprender la agricultura campesina en los Andes Centrales, Perú y Bolivia. Instituto Francés de Estudios Andinos; Centro de Estudios Regionales Andinos, Bartolomé de las Casas, Lima and Cusco, Peru, pp 207–213Google Scholar
  68. Patt A, Suarez P, Gwata C (2005) Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. PNAS 102(35):12623–12628. Google Scholar
  69. Patty L, Halloy S, Hiltbrunner E, Körner C (2010) Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205(10):695–703.
  70. Polk M, Young K, Baraer M, Mark B, McKenzie J, Bury J, Carey M (2017) Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. Appl Geogr 78:94–103. Google Scholar
  71. Postigo JC, Young K, Crews K (2008) Change and continuity in a pastoralist community in the High Peruvian Andes. Hum Ecol 36:535–551. Google Scholar
  72. Price M (2015) Mountains: a very short introduction. Oxford University Press, OxfordGoogle Scholar
  73. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7(1):81–102. Google Scholar
  74. Reid RS, Fernández-Giménez ME, Galvin KA (2014) Dynamics and resilience of rangelands and pastoral people around the globe. Annu Rev Environ Resour 39:217–242.
  75. Rhoades R, Rios XZ, Arangundy J (2006) Climate change in Cotacachi. In: Rhoades R (ed) Development with identity: community, culture, and sustainability in the Andes. CAB International, Wallingford, pp 64–74Google Scholar
  76. Rohde RF, Moleele NM, Mphale M, Allsopp N, Chanda R, Hoffman MT, Magole L, Young E (2016) Dynamics of grazing policy and practice: environmental and social impacts in three communal areas of southern Africa. Environ Sci Pol 9:302–316. Google Scholar
  77. Ruthsatz B (1993) Flora and ecological conditions of high Andean peatlands of Chile between 18°00′ (Arica) and 40°30′ (Osorno) south latitude. Phytoenologia 25:185–234.
  78. Ruthsatz B (2013) Corrigendum. Vegetación y ecología de los bofedales altoandinos de Bolivia. Phytocoenologia 43(1):169.
  79. Segnini A, Posadas A, Quiroz R, Milori DMBP, Vaz CMP, Martin-Neto L (2011) Soil carbon stocks and stability across an altitudinal gradient in southern Peru. J Soil Water Conserv 66(4):213–220. Google Scholar
  80. Seimon T, Seimon A, Yager K, Reider K, Delgado A, Sowell P, Tupayachi A, Konecky B, McAloose D, Halloy S (2017) Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: results from a decade of study. Ecol Evol 7:1527–1540. Google Scholar
  81. Seth A, Thibeault J, García M, Valdivia C (2010) Making sense of 21st century climate change in the Altiplano: observed trends and CMIP3 projections. Ann Assoc Am Geogr 100(4):835–865. Google Scholar
  82. Slovic P (1993) Perceived risk, trust, and democracy. Risk Anal 13(6):675–682.
  83. Snead J, Erickson C, Darling A (2009) Landscapes of movement: trails, paths and roads in anthropological perspective. University of Pennsylvania Press, Philadelphia Accessed 19 Jan 2019
  84. Soruco A, Vincent C, Francou B, Gonzalez JF (2009) Glacier decline between 1963 and 2006 in the Cordillera Real, Bolivia. Geophys Res Lett 36:L03502. Google Scholar
  85. Sperling F, Valdivia C, Quiroz R, Valdivia R, Angulo L, Seimon A, Noble I (2008) Transitioning to climate resilient development—perspectives from communities of Peru. Climate Change Series No. 115. The World Bank Environment Department Papers. Sustainable Development Vice-Presidency. Washington, D.C. 103 ppGoogle Scholar
  86. Squeo F, Warner B, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Nat 79(2):245–255. Accessed 25 Jan 2019
  87. Thibeault J, Seth A, García M (2010) Changing climate in the Altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res-Atmos 115:D08103. Google Scholar
  88. Thompson LG, Davis ME, Mosley-Thompson E, Sowers TA, Henderson KA, Zagorodnov VS, Lin PN, Mikhalenko VN, Campen RK, Bolzan JF, Cole-Dai J, Francou B (1998) A 25,000-year tropical climate history from Bolivian ice cores. Science 282(5395):1858–1864. Google Scholar
  89. Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Chang 59(1–2):137–155. Google Scholar
  90. Troll C (1968) The cordilleras of the tropical Americas: aspects of climatic, phytogeographical and agrarian ecology. In: Troll C (ed) Geo-ecology of the mountainous regions of the tropical Americas. Proceedings of the UNESCO Mexico symposium, 1966. Dümmlers Verlag, Bonn, pp 15–56Google Scholar
  91. Turin C, Valdivia C (2011) Off-farm work in the Peruvian Altiplano: seasonal and geographic considerations for agricultural and development policies. In: Deveraux S, Sabates-Wheeler R, Longhurst R (eds) Seasonality, Rural Livelihoods and Development. Earthscan, London, ch 10 pp 320Google Scholar
  92. Ulloa, D, Yager, K (2007) Memorias del Taller "Cambio Climático: Percepción Local y Adaptaciones en el Parque Nacional Sajama". Conservation International-Bolivia, La Paz. Accessed 19 Jan 2019
  93. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res-Atmos 114(D02108):1–15. Google Scholar
  94. Valdivia, C, Gilles, JL, Jetté, C, Quiroz, R, Espejo R (2003) Coping and adapting to climate variability: the role of assets, networks, knowledge and institutions. In: Insights and tools for adaptation: learning from climate variability. National Oceanic and Atmospheric Administration (NOAA) Office of Global Programs, Climate and Societal Interactions, Washington D.C.. 189–199Google Scholar
  95. Valdivia C, Seth A, Gilles JL, García M, Jiménez E, Cusicanqui J, Navia F, Yucra E (2010) Adapting to climate change in Andean ecosystems: landscapes, capitals, and perceptions shaping rural livelihood strategies and linking knowledge systems. Ann Assoc Am Geogr 100(4):818–834. Google Scholar
  96. Valdivia C, Gilles JL, Turin C (2013) Andean pastoral women in a changing world: challenges and opportunities. Rangelands 35(6):75–81. Google Scholar
  97. Valdivia C, Danda MK, Sheikh D, James HS, Gathaara V, Mbure G, Murithi F, Folk W (2014) Using translational research to enhance farmers’ voice: a case study of the potential introduction of GM cassava in Kenya’s coast. Ag Human Values 31(4):673–681Google Scholar
  98. Vergara W, Deeb A, Valencia A, Bradley R, Francou B, Zarzar A, Grünwaldt A, Haeussling S (2007) Economic impacts of rapid glacier retreat in the Andes. Eos Trans. AGU 88(25):261–264. Google Scholar
  99. Villarroel EK, Mollinedo PLP, Domic AI, Capriles JM, Espinoza C (2014) Local management of Andean wetlands in Sajama National Park, Bolivia. Mt Res Dev 34(4):356–368. Google Scholar
  100. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Chang 59(1):75–99. Google Scholar
  101. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present, and future. Earth Sci Rev 89(3):79–96. Google Scholar
  102. Weber E (2010) What shapes perceptions of climate change? Climate Change 3(1):332–342. Google Scholar
  103. Wheeler JC (1984) On the origin and early development of camelid pastoralism in the Andes. In: animals and archaeology, Vol. 3, early herders and their flocks. In: Clutton-Brock, J, Grigson, C (eds) British Archaeological Reports, BAR International Series 202, Oxford. 395–410Google Scholar
  104. Winterhalder B, Brooke-Thomas R (1978) Geoecology of southern Highland Peru: a human adaptation perspective. INSTAAR (Institute of Arctic and Alpine Research), University of Colorado, BoulderGoogle Scholar
  105. Yager K (2015) Satellite imagery and community perceptions of climate change impacts and landscape change. In: Barnes J, Dove M (eds) Climate cultures: anthropological perspectives on climate change. Yale University Press, New Haven, pp 146–168Google Scholar
  106. Yager K, Resnikowski H, Halloy S (2008a) Grazing and climatic variability in Sajama National Park, Bolivia. Pirineos 163:97–109.
  107. Yager K, Ulloa D, Halloy S (2008b) Conducting an interdisciplinary workshop on climate change: facilitating awareness and adaptation in Sajama National Park, Bolivia. In: Filho WL (ed) Interdisciplinary aspects of climate change. Hamburg University of Applied Sciences, Hamburg, pp 327–342Google Scholar
  108. Young K (2015) Ecosystem change in high tropical mountains. In: Huggel C, Carey M, Clague J, Kaab A (eds) The high-mountain cryosphere: environmental changes and human risks. Cambridge University Press, Cambridge, pp 227–246Google Scholar
  109. Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass balance observations—a review of the worldwide monitoring network. Ann Glaciol 50:101–111. Google Scholar
  110. Zimmerer K (1999) Overlapping patchworks of mountain agriculture in Peru and Bolivia: toward a regional-global landscape model. Hum Ecol 27(1):135–165. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karina Yager
    • 1
    • 2
    • 3
    Email author
  • Corinne Valdivia
    • 4
  • Daniel Slayback
    • 2
  • Elizabeth Jimenez
    • 5
  • Rosa Isela Meneses
    • 3
    • 6
    • 7
    • 8
  • Arely Palabral
    • 7
  • Mary Bracho
    • 1
  • Daniela Romero
    • 5
  • Alfred Hubbard
    • 2
  • Paula Pacheco
    • 9
  • Alan Calle
    • 9
  • Humber Alberto
    • 7
  • Olga Yana
    • 5
  • Daniela Ulloa
    • 7
  • Gabriel Zeballos
    • 10
  • Alejandro Romero
    • 5
  1. 1.W0517 Melville Library, Sustainability Studies, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA
  2. 2.Science Systems and Applications, Inc.LanhamUSA
  3. 3.Universidad Católica del NorteSan Pedro de AtacamaChile
  4. 4.Division of Applied Social Sciences, CAFNRUniversity of MissouriColumbiaUSA
  5. 5.CIDES (Ciencias de Desarrollo)Universidad Mayor San AndrésLa PazBolivia
  6. 6.Museo Nacional de Historia NaturalLa PazBolivia
  7. 7.Herbario Nacional de BoliviaLa PazBolivia
  8. 8.Center for Intercultural and Indigenous Research (CIIR)SantiagoChile
  9. 9.Agua SustentableLa PazBolivia
  10. 10.Department of GeographyOhio State UniversityColumbusUSA

Personalised recommendations