A quantitative assessment of mid-term risks of global change on forests in Western Mediterranean Europe

Abstract

Assessment of potential forests’ threats due to multiple global change components is urgently needed since increasing exposure to them could undermine their future persistence. We aim to assess the risks to the persistence of monospecific forests in Western Mediterranean Europe posed by climate change, fire, and land-use changes (i.e., deforestation) in the short and medium terms (horizon 2040). We specifically evaluate whether the degree of risk related to the likelihood of hazard occurrence varies depending on seral stage, tree species, and climate gradients. We performed the risk assessment on forests of Catalonia (NE Spain) through a combination of correlative and process-based modeling approaches and future global change scenarios. Overall, climate suitability of forests showed a general decrease by 2040, with the exception of xeric Pinus halepensis forests mainly distributed in the driest climate of the study area. Forest stands dominated by low drought-tolerant species were at higher risk of losing climatic suitability than forests dominated by Mediterranean species. The highest fire and deforestation risks were predicted for forest stands in dry climate where human pressures are higher. Nevertheless, high deforestation risk was also attained outside the driest areas. Deforestation risk was lower in old-growth than in younger stands, whereas old-growth forests in the Wet climate or dominated by Pinus sylvestris were projected to be at higher fire risk than younger forests. Our results suggest that conservation actions should target forest stands in dry climate. Moreover, old-growth forest stands should also be prioritized due to their particular sensitivity to disturbances and their high ecological value.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19:1645–1661. https://doi.org/10.1111/gcb.12181

    Article  Google Scholar 

  2. Alía R, Alba N, Agúndez D, Iglesias S, (coords) (2005) Manual para la comercialización y producción de semillas y plantas forestales. Materiales de base y de reproducción. Serie Forestal. DGB, Madrid

    Google Scholar 

  3. Ameztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641. https://doi.org/10.1111/j.1466-8238.2010.00550.x

    Article  Google Scholar 

  4. Anaya-Romero M, Muñoz-Rojas M, Ibáñez B, Marañón T (2016) Evaluation of forest ecosystem services in Mediterranean areas. A regional case study in South Spain. Ecosyst Serv 20:82–90. https://doi.org/10.1016/j.ecoser.2016.07.002

    Article  Google Scholar 

  5. Aquilué N, De Cáceres M, Fortin M-J, Fall A, Brotons L (2017) A spatial allocation procedure to model land-use/land-cover changes: accounting for occurrence and spread processes. Ecol Model 344:73–86. https://doi.org/10.1016/j.ecolmodel.2016.11.005

    Article  Google Scholar 

  6. Barbati A, Salvati R, Ferrari B, Di Santo D, Quatrini A, Portoghesi L, Travaglini D, Iovino F, Nocentini S (2012) Assessing and promoting old-growthness of forest stands: lessons from research in Italy. Plant Biosyst 146(1):167–174. https://doi.org/10.1080/11263504.2011.650730

    Article  Google Scholar 

  7. Barros A, Pereira J (2014) Wildfire selectivity for land cover type: does size matter? PLoS One 9:e84760. https://doi.org/10.1371/journal.pone.0084760

    Article  CAS  Google Scholar 

  8. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2009) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178. https://doi.org/10.3170/2008-7-18348

    Article  Google Scholar 

  9. Binkley D, Sisk T, Chambers C, Springer J, Block W (2007) The role of old-growth forests in frequent-fire landscapes. Ecol Soc 12(2):18. [online] URL: http://www.ecologyandsociety.org/vol12/iss2/art18/. https://doi.org/10.5751/ES-02170-120218

    Article  Google Scholar 

  10. Brotons L, Aquilué N, De Cáceres M, Fortin M-J, Fall A (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS One 8:e62392. https://doi.org/10.1371/journal.pone.0062392

    Article  CAS  Google Scholar 

  11. Catalán B, Saurí D, Serra P (2008) Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc Urban Plan 85:174–184. https://doi.org/10.1016/j.landurbplan.2007.11.004

    Article  Google Scholar 

  12. Cervera T, Garrabou R, Tello E (2015) Política forestal y evolución de los bosques en Cataluña desde el siglo XIX hasta la actualidad. Investig Hist Econ (IHE)/J Span Econ Hist Assoc 11(02):116–127. https://doi.org/10.1016/j.ihe.2014.04.002

    Article  Google Scholar 

  13. Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429. https://doi.org/10.1038/ngeo233

    Article  CAS  Google Scholar 

  14. de Mendiburu F (2015) Agricolae: statistical procedures for agricultural research. R package version 1.2–3. http://CRAN.R-project.org/package=agricolae

  15. Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusià J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardans J, Sus O, Vallejo VR, Vayreda J, Retana J (2014) Reassessing global change research priorities in Mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43. https://doi.org/10.1111/geb.12224

    Article  Google Scholar 

  16. Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, Noordwijk M, Creed IF, Pokorny J, Gaveau D, Spracklen DV, Tobella AB, Ilstedt U, Teuling AJ, Gebrehiwot SG, Sands DC, Muys B, Verbist B, Springgay E, Sugandi Y, Sullivan CA (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

    Article  Google Scholar 

  17. FAO (2013) State of Mediterranean forests 2013. E-ISBN 978-92-5-107538-8

  18. Fernández-de-Uña L, Cañellas I, Gea-Izquierdo G (2015) Stand competition determines how different tree species will cope with a warming climate. PLoS One 10(3):e0122255. https://doi.org/10.1371/journal.pone.0122255

    Article  CAS  Google Scholar 

  19. Frey SJK, Hadley AS, Johnson SL, Schulze M, Jones JA, Betts MG (2016) Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv 2(4):e1501392. https://doi.org/10.1126/sciadv.1501392

    Article  Google Scholar 

  20. Garcia RA, Cabeza M, Altwegg R, Araújo MB (2016) Do projections from bioclimatic envelope models and climate change metrics match? Glob Ecol Biogeogr 25:65–74. https://doi.org/10.1111/geb.12386

    Article  Google Scholar 

  21. Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D, Fady B, Bou Dagher-Kharrat M, Derridj A, Slimani S, Badri W, Alifriqui M, Auclair L, Simenel R, Aderghal M, Baudoin E, Galiana A, Prin Y, Sanguin H, Fernandez C, Baldy V (2016) Mediterranean forests, land use and climate change: a social-ecological perspective. Reg Environ Chang 18:623–636. https://doi.org/10.1007/s10113-016-0994-3

    Article  Google Scholar 

  22. Gil-Tena A, Aquilué N, Duane A, De Cáceres M, Brotons L (2016) Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain. Eur J For Res 135(2):403–416. https://doi.org/10.1007/s10342-016-0943-1

    Article  CAS  Google Scholar 

  23. González-Olabarria JR, Mola-Yudego B, Coll L (2015) Different factors for different causes: analysis of the spatial aggregations of fire ignitions in Catalonia (Spain). Risk Anal 35(7):1197–1209. https://doi.org/10.1111/risa.12339

    Article  Google Scholar 

  24. Gracia M, Comas L, Vayreda J, Batlle C, Ibàñez JJ (2011) Inventari de Boscos Singulars de Catalunya. CREAF, Bellaterra

    Google Scholar 

  25. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  CAS  Google Scholar 

  26. Ibàñez JJ, Burriel JA (2010) Mapa de cubiertas del suelo de Cataluña: características de la tercera edición y relación con SIOSE. In: Ojeda J, Pita MF, Vallejo I (eds) Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos. Secretariado de Publicaciones de la Universidad de Sevilla, Sevilla, pp 179–198

    Google Scholar 

  27. IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  28. Keenan RJ, Read SM (2012) Assessment and management of old-growth forests in south eastern Australia. Plant Biosyst 146(1):214–222. https://doi.org/10.1080/11263504.2011.650726

    Article  Google Scholar 

  29. Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR, Müller D, Plutzar C, Stürck J, Verkerk PJ, Verburg PH, Reenberg A (2016) Hotspots of land use change in Europe. Environ Res Lett 11(6):064020. https://doi.org/10.1088/1748-9326/11/6/064020

    Article  Google Scholar 

  30. Lloret F, Solé A, Vayreda J, Estevan H, Terradas J (2009) Atles de les espècies llenyoses dels boscos de Catalunya. Lynx ediciones, Bellaterra

    Google Scholar 

  31. Lloret F, Martinez-Vilalta J, Serra-Diaz JM, Ninyerola N (2013) Relationship between projected changes in future climàtic suitability and demographic and functional traits of forest tree species in Spain. Clim Chang 120:449–462. https://doi.org/10.1007/s10584-013-0820-6

    Article  Google Scholar 

  32. Loepfe L, Martinez-Vilalta J, Piñol J (2012) Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim Chang 115:693–707. https://doi.org/10.1007/s10584-012-0488-3

    Article  Google Scholar 

  33. Mansourian S, Rossi M, Vallauri D (2013) Ancient forests in the northern Mediterranean: neglected high conservation value areas. WWF, Marseille

    Google Scholar 

  34. Martín-Alcón S, Coll L, De Cáceres M, Guitart L, Cabré M, Just A, González-Olabarría JR (2015) Combining aerial LiDAR and multispectral imagery to assess postfire regeneration types in a Mediterranean forest. Can J For Res 45(7):856–866. https://doi.org/10.1139/cjfr-2014-0430

    Article  Google Scholar 

  35. Martínez-Fernández J, Ruiz-Benito P, Zavala MA (2015) Recent land cover changes in Spain across biogeographical regions and protection levels: implications for conservation policies. Land Use Policy 44:62–75. https://doi.org/10.1016/j.landusepol.2014.11.021

    Article  Google Scholar 

  36. Montserrat Aguadé D (1998) Situaciones sinópticas relacionadas con el inicio de grandes forestales en Cataluña. Nimbus 1-2:93–112

    Google Scholar 

  37. Moré G, Pons X, Burriel JA, Castells R, Ibàñez JJ, Roijals X (2005) Generación de cartografía detallada de vegetación mediante procesamiento digital de imágenes Landsat, variables orográficas y climáticas. 6 Geomatic week, Barcelona

  38. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. https://doi.org/10.3354/cr031085

    Article  Google Scholar 

  39. Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann JV, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Rovere ELL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Rooijen SV, Victor N, Dadi Z (2000) Special report on emissions scenarios. Special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  40. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. UAB, Bellaterra

    Google Scholar 

  41. Nocentini S, Coll L (2013) Mediterranean forests: human use and complex adaptive systems. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, New York, pp 214–243

    Google Scholar 

  42. Pausas JG, Fernández-Muñoz S (2011) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang 110:215–226. https://doi.org/10.1007/s10584-011-0060-6

    Article  Google Scholar 

  43. Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, Pequero G, Margalef O, Pla-Rabés S, Stefanescu C, Asensio D, Preece C, Lui L, Verger A, Barbeta A, Achotegui-Castells A, Gargallo-Garriga A, Sperlich D, Farré-Armengol G, Fernández-Martínex M, Liu D, Zhang C, Urbina I, Camino-Serrano M, Vives-Ingla M, Stocker BD, Balzarolo M, Guerrierei R, Paucelle M, Marañón-Jiménez S, Bórnez-Mejías K, Zhaobin M, Descals A, Castellanos A, Terradas J (2017) Impacts of global change on Mediterranean forests and their services. Forests 8:1–37. https://doi.org/10.3390/f8120463

    Article  Google Scholar 

  44. Puettmann KJ, Coates KD, Messier CC (2009) A critique of silviculture: managing for complexity. Island Press, Washington, DC

    Google Scholar 

  45. Rodrigo A, Retana J, Picó FX (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–729. https://doi.org/10.1890/02-0492

    Article  Google Scholar 

  46. Roques A, Rousselet J, Avci M, Avtzis DN, Basso A, Battisti A, Lahbib Ben Jamaa M, Bensidi A, Berardi L, Berretima W, Branco M, Chakali G, Cota E, Dautbasic M, Delb H, El Alaoui El Fels MA, El Mercht S, El Mokhefi M, Forster B, Garcia J, Georgiev G, Glavendekic MM, Goussard F, Halbig P, Henke L, Hernandez R, Hódar JA, Ipekdal K, Jurc M, Klimetzek D, Laparie M, Larsson S, Mateus E, Matosevic D, Meier F, Mendel Z, Meurisse N, Mihajlovic L, Mirchev P, Nasceski S, Nussbaumer C, Paiva M-R, Papazova I, Pino J, Podlesnik J, Poirot J, Protasov A, Rahim N, Sanchez Peña G, Santos H, Sauvard D, Schopf A, Simonato M, Tsankov G, Wagenhoff E, Yart A, Zamora R, Zamoum M, Robinet C (2015) Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. In: Roques A (ed) Processionary moths and climate change: an update, Quae edn. Springer, Dordrecht, pp 81–161

    Google Scholar 

  47. Sala OE, Stuart Chapin F, III Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    Article  CAS  Google Scholar 

  48. Sheffer E (2012) A review of the development of Mediterranean pine–oak ecosystems after land abandonment and afforestation: are they novel ecosystems? Ann For Sci 69:429–443. https://doi.org/10.1007/s13595-011-0181-0

    Article  Google Scholar 

  49. Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 226(6):1695–1703. https://doi.org/10.1111/cobi.12548

    Article  Google Scholar 

  50. Spies TA, Hemstrom MA, Youngblood A, Hummel S (2006) Conserving old-growth forest diversity in disturbance-prone landscapes. Conserv Biol 20(2):351–362. https://doi.org/10.1111/j.1523-1739.2006.00389.x

    Article  Google Scholar 

  51. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  CAS  Google Scholar 

  52. UNECE and FAO (2011) The European forest sector outlook study II. 2010–2030. Study paper 28. ISBN 978-92-1-117051-1

  53. Verburg PH, van Berkel DB, van Doorn AM, van Eupen M, van den Heiligenberg HARM (2010) Trajectories of land use change in Europe: a model-based exploration of rural futures. Landsc Ecol 25:217–232. https://doi.org/10.1007/s10980-009-9347-7

    Article  Google Scholar 

  54. Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172. https://doi.org/10.1890/10-0647.1

    Article  Google Scholar 

  55. Villanueva JA (ed) (2005) Tercer Inventario Forestal Nacional (1997–2007). Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  56. Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci U S A 106:19723–19728. https://doi.org/10.1073/pnas.0901643106

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (CGL2014-59742, CGL2017-89999-C2-2-R, being a contribution to the ECOMETAS network (CGL2016-81706-REDT)), the EU’s 7FP projects (ERA-NET FORESTERRA project Informed 29183 and ERANET-SUMFORESTS project FutureBioEcon PCIN-2017-052), and the Generalitat de Catalunya (CERCA Program). M. N. and M. B. (UAB) generate climatic predictions within the MONTES-Consolider project. We thank the Fire Prevention Service (Generalitat de Catalunya) for providing data on fire statistics. Population data was gathered from the Spanish Statistical Office. A. G-T and AMO were supported by the Spanish Government through the “Juan de la Cierva” fellowship program (JCI-2012-12089 and IJCI-2016-30349, respectively).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lluís Brotons.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor: Tony Weir.

Electronic supplementary material

ESM 1

(DOCX 1120 kb)

ESM 2

(DOCX 994 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gil-Tena, A., Morán-Ordóñez, A., Comas, L. et al. A quantitative assessment of mid-term risks of global change on forests in Western Mediterranean Europe. Reg Environ Change 19, 819–831 (2019). https://doi.org/10.1007/s10113-018-1437-0

Download citation

Keywords

  • Climate change
  • Deforestation
  • Fires
  • IPCC-SRES climate projections
  • Monospecific forests
  • Old-growth forests