Skip to main content

Estimating damages from climate-related natural disasters for the Caribbean at 1.5 °C and 2 °C global warming above preindustrial levels

Abstract

This paper examines historical and future changes in normalised damages resulting from climate-related natural disasters for the Caribbean. Annualised damages of USD824 million are shown to be non-stationary over the historical period 1964 to 2013. Perturbations of (i) sea surface temperatures (SST) in the tropical North Atlantic (TNA) and (ii) the Atlantic multi-decadal oscillation (AMO) appear to be associated with historical damages. Both the TNA and AMO are known modulators of hurricane activity and rainfall amounts in the Caribbean. Indicative future damages are determined using (i) cumulative distribution functions (CDFs) of perturbed climate states and (ii) an artificial neural network (ANN) model of damages using projected TNA values and the state of the AMO derived from an ensemble of five coupled model intercomparison project phase 5 (CMIP5) global climate models (GCMs) run under the RCP 4.5 scenario. Estimates of future damages are determined when global mean surface temperatures (GMST) reach and exceed 1.5 °C above preindustrial levels. Annual normalised damages may potentially increase to at least USD1395 million or close to double for 1.5 °C. At 2 °C, higher damages may occur; however, large uncertainty across all GCMs prohibits the identification of significant difference between 1.5 and 2 °C. Significant differences in damages do, however, exist for at least two of the GCMs for the two climate states. The robustness of the results is discussed in light of a number of issues, including limitations associated with the data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Acevedo MS (2014) Debt, growth and natural disasters: a Caribbean trilogy. International Monetary Fund, WP/14/125. https://doi.org/10.5089/9781498337601.001 URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2480275. Accessed August 2017

    Article  Google Scholar 

  2. Acevedo MS (2016) Gone with the wind: estimating hurricane and climate change costs in the Caribbean (working paper no. 16/199 no. WPIEA2016199). International Monetary Fund https://doi.org/9781475544763. Accessed August 2017

  3. Addinsoft, S. 2013 XLSTAT Software

  4. Appendini CM, Pedrozo-Acuña A, Meza-Padilla R, Torres-Freyermuth A, Cerezo-Mota R, López-González J, Ruiz-Salcines P (2017) On the role of climate change on wind waves generated by tropical cyclones in the Gulf of Mexico. Coast Eng J 59(2):02):1740001. https://doi.org/10.1142/S0578563417400010

    Article  Google Scholar 

  5. Barredo JI (2009) Normalised flood losses in Europe: 1970–2006. Nat Hazards Earth Syst Sci 9(1):97–104. https://doi.org/10.5194/nhess-9-97-2009

    Article  Google Scholar 

  6. Below R, Wirtz A, and Guha-Sapir D (2009) Disaster category classification and peril terminology for operational purposes. Centre for Research on the Epidemiology of Disasters (CRED) and Munich Reinsurance Company (Munich Re). https://www.cred.be/downloadFile.php?file=sites/default/files/DisCatClass_264.pdf. Accessed August 2017

  7. Benjamin L, Thomas A (2016) 1.5°C to stay alive? AOSIS and the long term temperature goal in the Paris agreement. IUCN Academy of Environmental law e-Journal 7:122–129 http://www.iucnael.org/en/e-journal. Accessed August 2017

    Google Scholar 

  8. Borda P, and Wright A (2015) Macroeconomic fluctuations under natural disaster shocks in Central America and the Caribbean. https://doi.org/10.18235/0000571 URL http://www.cemla.org/red/papers2015/CBRN-XX-SelectedPapers4.pdf. Accessed August 2017

  9. Bueno, R, Herzfeld C, Stanton EA, and Ackerman F (2008) The Caribbean and climate change- the cost of inaction. Tufts University. http://www.browardarts.net/NaturalResources/ClimateChange/Documents/Caribbean-full-Eng.pdf. Accessed November 2017

  10. Burgess CP, Taylor MA, Stephenson T, Mandal A, Powell L (2015a) A macro-scale flood risk model for Jamaica with impact of climate variability. Nat Hazards 78(1):231–256. https://doi.org/10.1007/s11069-015-1712-z

    Article  Google Scholar 

  11. Burgess CP, Taylor MA, Stephenson T, Mandal A (2015b) Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). Journal of Hydrology: Regional Studies 3:424–443. https://doi.org/10.1016/j.ejrh.2014.10.004

    Article  Google Scholar 

  12. Central Intelligence Agency (CIA) (1963) The Effects of Hurricane Flora on Cuba. https://www.cia.gov/library/readingroom/docs/DOC_0000331418.pdf. Accessed March 2017

  13. Cole C, McCullough K (2016) How does natural Hazard insurance literature discuss the risks of climate change? J Insur Regul 35:6

    Google Scholar 

  14. D’Adda C, Scorcu AE (2003) On the time stability of the output-capital ratio. Econ Model 20(6):1175–1189. https://doi.org/10.1016/s0264-9993(02)00081-0

    Article  Google Scholar 

  15. De Groeve T, Poljansek K, and Ehrlich D (2013) Recording disaster losses. Report, JRC83743, EUR 26111. http://www.irdrinternational.org/wp-content/uploads/2014/09/JRC_RecordingDisasterLoss.pdf. Accessed August 2017

  16. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Climate Change 114:813–822. https://doi.org/10.1007/s10584-012-0570-x Accessed August 2017

    Article  Google Scholar 

  17. Earth System Research Laboratory: Physical Sciences Division (ESRL) (2017). Climate indices: monthly atmospheric and ocean time series. https://www.esrl.noaa.gov/psd/data/climateindices/list/#TNA. Accessed June 2017

  18. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. https://doi.org/10.1038/nature03906

    CAS  Article  Google Scholar 

  19. Felbermayr G, Gröschl J (2014) Naturally negative: the growth effects of natural disasters. J Dev Econ 111:92–106. https://doi.org/10.1016/j.jdeveco.2014.07.004

    Article  Google Scholar 

  20. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C and Rummukainen M (2013) Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/cbo9781107415324.020

  21. Gassebner M, Keck A, The R (2010) Shaken, not stirred: the impact of disasters on international trade. Rev Int Econ 18(2):351–368 Accessed from https://doi.org/10.2139/ssrn.912210 URL https://www.econstor.eu/bitstream/10419/50874/1/51505058X.pdf

    Article  Google Scholar 

  22. GISTEMP Team (2017) GISS surface temperature analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2015-10-01 at https://data.giss.nasa.gov/gistemp/

  23. Goldenberg SB, Landsea C, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity. Science 293:474–479. https://doi.org/10.1126/science.1060040

    CAS  Article  Google Scholar 

  24. Guha-Sapir D, and Below R (2002) The quality and accuracy of disaster data: a comparative analyse of 3 global data sets. Disaster Management facility, World Bank, Working paper ID 191

  25. Guha-Sapir D, Below R, Hoyois P (2015) EM-DAT: International disaster database. Catholic University of Louvain, Brussels

    Google Scholar 

  26. Hoyois, P and Guha-Sapir D (2003) Three decades of floods in Europe: a preliminary analysis of EMDAT data. WHO collaborating centre for research on the epidemiology of disasters (CRED). Catholique University of Louvain. https://dial.uclouvain.be/pr/boreal/object/boreal%3A179720/datastream/PDF_01/view. Accessed November 2017

  27. Hsiang S, Kopp R, Jina A, Rising J, Delgado M, Mohan S, Rasmussen DJ, Muir-Wood R, Wilson P, Oppenheimer M, Larsen K, Houser T (2017) Estimating economic damage from climate change in the United States. Science 30(6345):1362–1369. https://doi.org/10.1126/science.aal4369

    CAS  Article  Google Scholar 

  28. IPCC (2013) Climate Change 2013: Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, p 1535. https://doi.org/10.1017/CBO9781107415324.004

    Chapter  Google Scholar 

  29. James SL, Gubbins P, Murray CJL, Gakidou E (2012) Developing a comprehensive time series of GDP per capita for 210 countries from 1950 to 2015. Popul Health Metrics 10(1):12. https://doi.org/10.1186/1478-7954-10-12

    Article  Google Scholar 

  30. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2):173–199. https://doi.org/10.1029/1999rg900002

    Article  Google Scholar 

  31. Jonkman SN (2005) Global perspectives on loss of human life caused by floods. Nat Hazards 34:151–175. https://doi.org/10.1007/s11069-004-8891-3

    Article  Google Scholar 

  32. Klotzbach PJ (2011) The influence of El Niño–southern oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J Clim 24:721–731. https://doi.org/10.1175/2010JCLI3705.1

    Article  Google Scholar 

  33. KNMI Climate Explorer (2017). Royal Netherlands Meteorological Institute (KNMI). http://climexp.knmi.nl. Accessed March 2017

  34. Knutson T, Tuleya R (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495. https://doi.org/10.1175/1520-0442(2004)017%3C3477:iocwos%3E2.0.co;2

    Article  Google Scholar 

  35. Knutson T, McBride J, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin J, Srivastava A, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. https://doi.org/10.1038/ngeo779

    CAS  Article  Google Scholar 

  36. Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. Springer Science & Business Media, New York. https://doi.org/10.1007/978-0-387-71887-3

    Book  Google Scholar 

  37. Landsea CW (2005) Hurricanes and global warming. Nature 438:E11–E12. https://doi.org/10.1038/nature04477

    CAS  Article  Google Scholar 

  38. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35(18). https://doi.org/10.1029/2008gl034864

  39. Lim Y-K, Siegfried DS, Reale O, Molod MA, Suarez MJ, Auer MB (2016) Large-scale controls on Atlantic tropical cyclone activity on seasonal time scales. J Clim 29:6727–6749. https://doi.org/10.1175/JCLI-D-16-0098.1

    Article  Google Scholar 

  40. Madsen JB, Mishra V, Smyth R (2012) Is the output–capital ratio constant in the very long run? Manch Sch 80(2):210–236. https://doi.org/10.1111/j.1467-9957.2010.02222.x

    Article  Google Scholar 

  41. Malmaeus JM (2016) Economic values and resource use. Sustainability 8(5):490. https://doi.org/10.3390/su8050490

    Article  Google Scholar 

  42. Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical cyclone damage. Nat Clim Chang 2:205–209. https://doi.org/10.1038/nclimate1357

    Article  Google Scholar 

  43. National Oceanographic and Atmospheric Administration (NOAA) (2017), National Hurricane Centre, HUR-DAT database. http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html. Accessed August 2017

  44. Neumayer E, Barthel F (2011) Normalizing economic loss from natural disasters: a global analysis. Glob Environ Chang 21(1):13–24. https://doi.org/10.1016/j.gloenvcha.2010.10.004

    Article  Google Scholar 

  45. Peduzzi P, Chatenoux B, Dao H, De Bono A, Herold C, Kossin J, Mouton F, Nordbeck O (2012) Global trends in tropical cyclone risk. Nat Clim Chang 2(4):289–294 https://doi.org/10.1038/nclimate1410 URL http://www.ssec.wisc.edu/~kossin/articles/nclimate1410.pdf. Accessed August 2017

    Article  Google Scholar 

  46. Pielke RA Jr, Rubiera J, Landsea C, Fernández ML, Klein R (2003) Hurricane vulnerability in Latin America and the Caribbean: normalized damage and loss potentials. Natural Hazards Review 4(3):101–114. https://doi.org/10.1061/(asce)1527-6988(2003)4:3(101)

    Article  Google Scholar 

  47. Re M (2007) Natural catastrophes (2006) analyses, assessments. Positions. Munich Re Publications, Munich. http://www.greencrossaustralia.org/media/9557889/302-05699_en.pdf. Accessed December 2017

  48. Re M (2014) Natural catastrophes (2013) analyses, assessments. Positions. Munich Re Publications, Munich. Accessed December 2017 from https://www.munichre.com/site/corporate/get/documents_E1043212252/mr/assetpool.shared/Documents/5_Touch/_Publications/302-08121_en.pdf. Accessed August 2017

  49. Rosen J (2017) How an ocean climate cycle favored Harvey. Science 357(6354):853–854. https://doi.org/10.1126/science.357.6354.853

    CAS  Article  Google Scholar 

  50. Sahin S (2011) Estimation of disasters’ economic impact in 1990–2007: global perspectives. World Bank, Washington DC http://dpanther.fiu.edu/sobek/content/FI/13/01/09/73/00001/FI13010973.pdf. Accessed August 2017

    Google Scholar 

  51. Stephenson TS, Vincent LA, Allen T, Van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D, Boekhoudt JRI, Blenman RC, Braithwaite GC, Brown G, Butler M, Cumberbatch CJM, Etienne-Leblanc S, Lake DE, Martin DE, McDonald JL, Zaruela MO, Porter AO, Ramirez MS, Tamar GA, Roberts BA, Mitro SS, Shaw A, Spence JM, Winter A, Trotman AR (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int J Climatol 34:2957–2971. https://doi.org/10.1002/joc.3889

    Article  Google Scholar 

  52. Stolton S, Randall J, Dudley N(2008) Protected areas, climate change and disaster mitigation. Section 1: Climate change and the energy crisis. https://www.iucn.org/backup_iucn/cmsdata.iucn.org/downloads/policy_matters_16.pdf#page=84. Accessed November 2017

  53. Swanson NR, White H (1995) A model-selection approach to assessing the information in the term structure using linear models and artificial neural networks. J Bus Econ Stat 13(3):265–275. https://doi.org/10.2307/1392186

    Article  Google Scholar 

  54. Swanson NR, White H (1997) A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks. Rev Econ Stat 79(4):540–550. https://doi.org/10.1162/003465397557123

    Article  Google Scholar 

  55. Taylor MA, Enfield DB, Chen AA (2002) The influence of the tropical Atlantic vs. the tropical Pacific on Caribbean rainfall. J Geophys Res Oceans 107(C9):3127. https://doi.org/10.1029/2001JC001097

    Article  Google Scholar 

  56. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  57. Taylor MA, Leonardo AC, Abel C, Arnoldo B, Tannecia SS, Jones JJ, Campbell JD, Vichot A, and Charlery J (2018) Future Caribbean climates in a world of rising temperatures: the 1.5 vs 2.0 dilemma. Journal of Climate 2018. https://doi.org/10.1175/jcli-d-17-0074.1 URL https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-17-0074.1. Accessed August 2017

    Article  Google Scholar 

  58. Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24(23):3057–3060. https://doi.org/10.1029/97gl03092

    Article  Google Scholar 

  59. Tschoegl L, Below R, Debarati G-S (2006) An analytical review of selected data sets on natural disasters and impacts. Centre for Research on the Epidemiology of Disasters, Louvain http://www.cred.be/sites/default/files/TschoeglDataSetsReview.pdf. Accessed August 2017

    Google Scholar 

  60. Virmani JI, Weisberg RH (2006) The 2005 hurricane season: an echo of the past or a harbinger of the future? Geophys Res Lett 33:5. https://doi.org/10.1029/2005gl025517

    Article  Google Scholar 

  61. Wang CZ, Enfield DB, Lee SK, Landsea CW (2006) Influences of the Atlantic warm pool on Western hemisphere summer rainfall and Atlantic hurricanes. J Clim 19:3011–3028. https://doi.org/10.1175/jcli3770.1

    Article  Google Scholar 

  62. Wang C, Lee S-K, Enfield DB (2008) Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. https://doi.org/10.1029/2007GC001809

    Article  Google Scholar 

  63. Wang C, Hailong L, Lee S-K, Atlas R (2011) Impact of the Atlantic warm pool on United States landfalling hurricanes. Geophys Res Lett 38:L19702. https://doi.org/10.1029/2011GL049265

    Article  Google Scholar 

  64. Wang, C, Wang X, Weisberg RH, and Black ML (2017) Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations. Clim Dyn 1–19. https://doi.org/10.1007/s00382-017-3537-9

    Article  Google Scholar 

  65. Wehner MF, Reed KA, Loring B, Stone D, Krishnan H (2018) Changes in tropical cyclones under stabilized 1.5 °C and 2.0 °C global warming scenarios as simulated by the community atmospheric model under the HAPPI protocols. Earth Syst Dynam 9:187–195. https://doi.org/10.5194/esd-9-187-2018 2018

    Article  Google Scholar 

  66. Whyte FS, Taylor MA, Stephenson TS, Campbell JD (2007) Features of the Caribbean low level jet. Int J Climatol 28:119–128. https://doi.org/10.1002/joc.1510

    Article  Google Scholar 

  67. World Bank (2017) World development indicators. Washington, D.C. Accessed June 2017 from http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators#

    Google Scholar 

  68. Yan, T, Bao S, Pietrafesa LJ and Gayes PT (2014) Modal inter-comparisons between North Atlantic accumulated cyclone energy and the Atlantic multi-decadal oscillation, and the pathology of the 2013 hurricane season. Nat Sci 2014. https://doi.org/10.4236/ns.2014.68059

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling which is responsible for CMIP, and KNMI (KNMI 2017) for making the data accessible. Finally, we thank the anonymous reviewers whose helpful comments greatly improved the paper.

Funding

This paper was primarily funded through a Caribbean Development Bank (CDB) Grant and the Investment Plan for the Caribbean Track of the Pilot Program for Climate Resilience.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Patrick Burgess.

Electronic supplementary material

ESM 1

(DOCX 37 kb)

ESM 2

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burgess, C.P., Taylor, M.A., Spencer, N. et al. Estimating damages from climate-related natural disasters for the Caribbean at 1.5 °C and 2 °C global warming above preindustrial levels. Reg Environ Change 18, 2297–2312 (2018). https://doi.org/10.1007/s10113-018-1423-6

Download citation

Keywords

  • Caribbean
  • Damages
  • Climate change