Skip to main content

Implications of climate change for semi-arid dualistic agriculture: a case study in Central Chile

Abstract

The nexus between climate change, agriculture, and poverty has become a major topic of concern, especially for dry regions, which represent a large share of the world’s population and ecosystems vulnerable to climate change. In spite of this, to date, few studies have examined the impacts of climate change on agriculture and the adaptation strategies of vulnerable farmers from emerging semi-arid regions with dualist agriculture, in which subsistence farms coexist with commercial farms. This study aims to assess the micro-level impact of climate change and the farm household adaptation strategies in a semi-arid region in Central Chile. To this end, we develop a modelling framework that allows for (1) the assessment of farm-household responses to both climate change effects and adaptation policy scenarios and (2) the identification of local capacities and adaptation strategies. Aggregated results indicate that climate change has a substantial economic impact on regional agricultural income, while the micro-level analysis shows that small-scale farm households are the most vulnerable group. We observe that household characteristics determine to a large extent the adaptation capacity, while an unexpected result indicates that off-farm labour emerges as a powerful option for adapting to climate change. As such, our approach is well suited for ex ante micro-level adaptation analysis and can thereby provide useful insights to guide smart climate policy-making.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aerts JC, Botzen W, Veen A, Krywkow J, Werners S (2008) Dealing with uncertainty in flood management through diversification. Ecol Soc 13:1–17. https://doi.org/10.5751/ES-02348-130141

    Article  Google Scholar 

  • Agrawal A, Perrin N (2009) Climate adaptation, local institutions and rural livelihoods Adapting to climate change:thresholds, values, governance: 350–367

  • Aleksandrova M, Gain AK, Giupponi C (2016) Assessing agricultural systems vulnerability to climate change to inform adaptation planning: an application in Khorezm, Uzbekistan. Mitig Adapt Strateg Glob Chang 21:1263–1287. https://doi.org/10.1007/s11027-015-9655-y

    Article  Google Scholar 

  • Baldos ULC, Hertel TW (2015) The role of international trade in managing food security risks from climate change. Food Sec 7:275–290. https://doi.org/10.1007/s12571-015-0435-z

    Article  Google Scholar 

  • Barnett J, O’Neill SJ (2012) Islands, resettlement and adaptation. Nat Clim Chang 2:8–10. https://doi.org/10.1038/nclimate1334

    Article  Google Scholar 

  • Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci 108:13432–13437. https://doi.org/10.1073/pnas.1103373108

    Article  Google Scholar 

  • Berger T, Troost C (2014) Agent-based modelling of climate adaptation and mitigation options in agriculture. J Agric Econ 65:323–348. https://doi.org/10.1111/1477-9552.12045

    Article  Google Scholar 

  • Berger T, Birner R, McCarthy N, DíAz J, Wittmer H (2006) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21:129–148. https://doi.org/10.1007/s11269-006-9045-z

    Article  Google Scholar 

  • Blanco M, Ramos F, Van Doorslaer B, Martínez P, Fumagalli D, Ceglar A, Fernández FJ (2017) Climate change impacts on EU agriculture: a regionalized perspective taking into account market-driven adjustments. Agric Syst 156:52–66. https://doi.org/10.1016/j.agsy.2017.05.013

    Article  Google Scholar 

  • Bobojonov I, Aw-Hassan A (2014) Impacts of climate change on farm income security in Central Asia: an integrated modeling approach. Agric Ecosyst Environ 188:245–255. https://doi.org/10.1016/j.agee.2014.02.033

    Article  Google Scholar 

  • CASEN (2015) Encuesta “Caracterización Socieconómica Nacional”. Ministerio del Desarrollo Social, Santiago Chile. Available from: <http://www.encuestacasen.cl/>

  • CNR (2015) Resultados Ley N° 18.450. Comisión Nacional de Riego. Ministerio de Agricultura, Chile. http://www.cnr.gob.cl/FomentoAlRiego/Resultado%20y%20Aplicacin%20Ley%2018450%20por%20ao/Resultados%202014.pdf

  • Dasgupta P, Morton JF, Dodman D, Karapinar B, Meza F, Rivera-Ferre MG, Toure Sarr A, Vincent KE (2014) Rural areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 613-657

  • Davis J, Lopez-Carr D (2010) The effects of migrant remittances on population–environment dynamics in migrant origin areas: international migration, fertility, and consumption in highland Guatemala. Popul Environ 32:216–237. https://doi.org/10.1007/s11111-010-0128-7

    Article  Google Scholar 

  • Deressa TT, Hassan RM, Ringler C, Alemu T, Yesuf M (2009) Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob Environ Chang 19:248–255. https://doi.org/10.1016/j.gloenvcha.2009.01.002

    Article  Google Scholar 

  • Donoso G (2006) Water markets: case study of Chile’s 1981 Water Code. Cien. Inv. Agr. 33(2):157–171 Ciencia e investigación Agraria 33:131–146. https://doi.org/10.7764/rcia.v33i2.1299

  • Donoso G (2015) Water pricing in Chile: decentralization and market reforms. In: Water pricing experiences and innovations. Springer, pp 83–96. https://doi.org/10.1007/978-3-319-16465-6_5

  • Esteve P, Varela-Ortega C, Blanco-Gutiérrez I, Downing TE (2015) A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol Econ 120:49–58. https://doi.org/10.1016/j.ecolecon.2015.09.017

    Article  Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos 114. https://doi.org/10.1029/2008JD010519

  • Fernández FJ, Blanco M (2015) Modelling the economic impacts of climate change on global and European agriculture. Review of economic structural approaches. Economics 9:1. https://doi.org/10.5018/economics-ejournal.ja.2015-10

    Article  Google Scholar 

  • Fernández FJ, Ponce RD, Blanco M, Rivera D, Vásquez F (2016) Water variability and the economic impacts on small-scale farmers. A farm risk-based integrated modelling approach. Water Resour Manag 30:1357–1373. https://doi.org/10.1007/s11269-016-1227-8

    Article  Google Scholar 

  • FIA (2010) El cambio climático en el sector silvoagropecuario de Chile. Fundación para la Innovación Agraria, Ministerio de Agricultura de Chile, Santiago

  • Fischer G, Shah M, Tubiello FN, Van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans R Soc B Biol Sci 360:2067–2083. https://doi.org/10.1098/rstb.2005.1744

    Article  Google Scholar 

  • Fraser ED, Mabee W, Figge F (2005) A framework for assessing the vulnerability of food systems to future shocks. Futures 37:465–479. https://doi.org/10.1016/j.futures.2004.10.011

    Article  Google Scholar 

  • Gassert F, Landis M, Luck M, Reig P, Shiao T (2013) Aqueduct global maps 2.0 Water Resources Institute (WRI): Washington, DC:202011-202012

  • Gbetibouo GA, Hassan RM, Ringler C (2010) Modelling farmers’ adaptation strategies for climate change and variability: the case of the Limpopo Basin, South Africa. Agrekon 49:217–234. https://doi.org/10.1080/03031853.2010.491294

    Article  Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci 110:6907–6912. https://doi.org/10.1073/pnas.1210127110

    Article  Google Scholar 

  • Hertel TW, Rosch SD (2010) Climate change, agriculture, and poverty. Appl Econ Perspect Policy:ppq016. https://doi.org/10.1093/aepp/ppq016

  • Hertel TW, Burke MB, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20:577–585. https://doi.org/10.1016/j.gloenvcha.2010.07.001

    Article  Google Scholar 

  • Howitt RE (1995) Positive mathematical programming. Am J Agric Econ 77:329–342. https://doi.org/10.2307/1243543

    Article  Google Scholar 

  • INE (2007) Censo Agropecuario. Instituto Nacional de Estadística

  • INE (2013) Informe Anual de Estadísticas Agropecuarias. Instituto Nacional de Estadística, Chile

  • Jara-Rojas R, Osorio JD, Manríquez P, Rojas Á (2012) Classification criteria and commercial profile re-definition of the Family Farm Agriculture in Chile, Maule region. Rev Facult Cienc Agrarias 44:143–156

    Google Scholar 

  • Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Chang 13:51–59. https://doi.org/10.1016/S0959-3780(02)00090-0

    Article  Google Scholar 

  • Kanellopoulos A, Reidsma P, Wolf J, Van Ittersum M (2014) Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: an application of benchmarking and bio-economic farm modelling. Eur J Agron 52:69–80. https://doi.org/10.1016/j.eja.2013.10.003

    Article  Google Scholar 

  • Karfakis P, Lipper L, Smulders M, Meybeck A, Lankoski J, Redfern S, Azzu N, Gitz V The assessment of the socioeconomic impacts of climate change at household level and policy implications. In: Building resilience for adaptation to climate change in the agriculture sector. Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012., 2012. Food and Agriculture Organization of the United Nations (FAO), pp 133–150

  • Koohafkan P, Stewart BA (2008) Drylands, people and land use. In: Water and cereals in drylands. FAO, pp 5–15

  • Kostov P, Lingard J (2002) Subsistence farming in transitional economies: lessons from Bulgaria. J Rural Stud 18:83–94. https://doi.org/10.1016/S0743-0167(01)00026-2

    Article  Google Scholar 

  • Kurukulasuriya P, Rosenthal S (2003) Climate change and agriculture: a review of impacts and adaptations. World Bank, Washington. http://documents.worldbank.org/curated/en/757601468332407727/Climate-change-and-agriculture-a-review-of-impacts-and-adaptations. Accessed 11 January 2017

  • Louhichi K, Gomez y Paloma S, Belhouchette H, Allen T, Fabre J, Blanco-Fonseca M, Chenoune R, Acs S, Flichman G (2013) Modelling agri-food policy impact at farm-household level in developing countries (FSSIM-Dev) Application to Sierra Leone Joint Research Centre JRC Scientific and Policy Reports. https://doi.org/10.2791/14527

  • MMA (2016) National Climate Change Action Plan 2017–2022. Ministry for the Environment, Santiago

    Google Scholar 

  • Mortimore M, Anderson S, Cotula L, Davies J, Faccer K, Hesse C, Morton JF, Nyangena W, Skinner J, Wolfangel C (2009) Dryland opportunities: a new paradigm for people, ecosystems and development. by: IUCN, Gland, Switzerland, IIED, London, UK and UNDP, New York, USA

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci 104:19680–19685. https://doi.org/10.1073/pnas.0701855104

    Article  Google Scholar 

  • Nelson GC, Mensbrugghe D, Ahammad H, Blanc E, Calvin K, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Lotze-Campen H, von Lampe M, d’Croz D, van Meijl H, Müller C, Reilly J, Robertson R, Sands R, Schmitz C, Tabeau A, Takahashi K, Valin H, Willenbockel D (2014) Agriculture and climate change in global scenarios: why don’t the models agree. Agric Econ 45:85–101. https://doi.org/10.1111/agec.l2091

    Article  Google Scholar 

  • Newton AC, Tejedor N (2011) Principles and practice of forest landscape restoration: case studies from the drylands of Latin America. IUCN

  • ODEPA (2010) Estimación del impacto socioeconómico del cambio climático en el Sector Silvoagropecuario de Chile. Oficina de Estudios y Políticas Agrarias (ODEPA)

  • ODEPA (2015) Chilean agriculture overview Agrarian Policies and Studies Bureau, Chilean Ministry of Agriculture, Chile

  • OECD/ECLAC (2016) OECD environmental performance reviews: Chile 2016. OECD Publishing. https://doi.org/10.1787/9789264252615-en

  • Olsson L, Opondo M, Tschakert P, Agrawal A, Eriksen S, Ma S, Perch L, Zakieldeen S (2014) Livelihoods and poverty. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 793–832

    Google Scholar 

  • Pandey R, Kala S, Pandey VP (2015) Assessing climate change vulnerability of water at household level. Mitig Adapt Strateg Glob Chang 20:1471–1485. https://doi.org/10.1007/s11027-014-9556-5

    Article  Google Scholar 

  • Perch L (2011) Mitigation of what and by what? Adaptation by whom and for whom? Dilemmas in delivering for the poor and the vulnerable in international climate policy, Working Paper, International Policy Centre for Inclusive Growth, No. 79

  • Phororo H (2001) Food crops or cash crops in the northern communal areas of Namibia: setting a framework for a research agenda

  • Ponce R, Blanco M, Giupponi C (2014) The economic impacts of climate change on the Chilean agricultural sector: a non-linear agricultural supply model. Chilean J Agric Res 74:404–412. https://doi.org/10.4067/S0718-58392014000400005

    Article  Google Scholar 

  • Ponce RD, Fernández F, Stehr A, Vásquez-Lavín F, Godoy-Faúndez A (2017) Distributional impacts of climate change on basin communities: an integrated modeling approach. Reg Environ Chang 17:1811–1821. https://doi.org/10.1007/s10113-017-1152-2

    Article  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755. https://doi.org/10.1038/nclimate1596

    Article  CAS  Google Scholar 

  • Reidsma P, Wolf J, Kanellopoulos A, Schaap BF, Mandryk M, Verhagen J, van Ittersum MK (2015) Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ Res Lett 10:045004. https://doi.org/10.1088/1748-9326/10/4/045004

    Article  Google Scholar 

  • Reilly J, Hohmann N (1993) Climate change and agriculture: the role of international trade. Am Econ Rev 83:306–312. http://www.jstor.org/stable/2117682. Accessed 25 July 2016

  • Roco L, Engler A, Bravo-Ureta B, Jara-Rojas R (2014) Farm level adaptation decisions to face climatic change and variability: evidence from Central Chile. Environ Sci Pol 44:86–96. https://doi.org/10.1016/j.envsci.2014.07.008

    Article  Google Scholar 

  • Roco L, Engler A, Bravo-Ureta BE, Jara-Rojas R (2015) Farmers’ perception of climate change in Mediterranean Chile. Reg Environ Chang 15:867–879. https://doi.org/10.1007/s10113-014-0669-x

    Article  Google Scholar 

  • Roco L, Poblete D, Meza F, Kerrigan G (2016) Farmers’ options to address water scarcity in a changing climate: case studies from two basins in Mediterranean Chile. Environ Manag 58:958–971. https://doi.org/10.1007/s00267-016-0759-2

    Article  Google Scholar 

  • Roco L, Bravo-Ureta B, Engler A, Jara-Rojas R (2017) The impact of climatic change adaptation on agricultural productivity in Central Chile: a stochastic production frontier approach. Sustainability 9:1648. https://doi.org/10.3390/su9091648

    Article  Google Scholar 

  • Rojas M (2012) Estado del arte de modelos para la investigación del calentamiento global. Informe para Opciones de Mitigación para enfrentar el Cambio Climático. MAPS Chile, Chile

  • Salinas CX, Mendieta J (2013) The cost of mitigation strategies for agricultural adaptation to global change. Mitig Adapt Strateg Glob Chang 18:933–941. https://doi.org/10.1007/s11027-012-9400-8

    Article  Google Scholar 

  • Santibáñez F, Santibáñez P, Cabrera R, Solis L, Quiroz M, Hernandez J (2008) Impactos productivos en el sector silvoagropecuario de Chile frente a escenarios de Cambio Climático Análisis de vulnerabilidad del sector silvoagropecuario, recursos hídricos y edáficos de Chile frente a escenarios de Cambio Climático Gobierno de Chile. Santiago:1–181

  • Skjeflo S (2013) Measuring household vulnerability to climate change—why markets matter. Glob Environ Chang 23:1694–1701. https://doi.org/10.1016/j.gloenvcha.2013.08.011

    Article  Google Scholar 

  • Skjeflo SW (2014) Measuring household vulnerability to climate change. In: Chen W-Y, Suzuki T, Lackner M (eds) Handbook of climate change mitigation and adaptation. Springer, New York, pp 1–12. https://doi.org/10.1007/978-1-4614-6431-0_74-1

    Chapter  Google Scholar 

  • Sumner A (2010) Global poverty and the new bottom billion: what if three-quarters of the world’s poor live in middle-income countries? IDS Working Papers 2010:01–43 https://doi.org/10.1111/j.2040-0209.2010.00349_2.x

  • Sumner A (2012) Where do the poor live? World Dev 40:865–877. https://doi.org/10.1016/j.worlddev.2011.09.007

    Article  Google Scholar 

  • Tonhasca A, Byrne DN (1994) The effects of crop diversification on herbivorous insects: a meta-analysis approach. Ecol Entomol 19:239–244. https://doi.org/10.1111/j.1365-2311.1994.tb00415.x

    Article  Google Scholar 

  • UNDP (2008) Desarrollo humano en Chile rural: Seis millones por nuevos caminos. United Nations Development Programme, Santiago, Chile

  • van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122:415–429. https://doi.org/10.1007/s10584-013-0974-2

    Article  Google Scholar 

  • Wang J, Huang X, Zhong T, Chen Z (2013) Climate change impacts and adaptation for saline agriculture in north Jiangsu Province, China. Environ Sci Pol 25:83–93. https://doi.org/10.1016/j.envsci.2012.07.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the IDRC-Canada for providing financial support for this research (no. 106924–001). We would also like to thank the Water Research Center for Agriculture and Mining (WARCAM) supported by CONICYT/Chile in the framework of FONDAP 2013—CRHIAM/CONICYT/FONDAP 15130015. Data from the field were collected under a LACEEP (Latin American and Caribbean Environmental Economics Program) research grant.

Funding

This work was supported by the International Development Research Centre (IDRC-Canada) [no. 106924–001] and the Water Research Center for Agriculture and Mining (WARCAM) supported by CONICYT/Chile in the framework of FONDAP 2013 [no. 15130015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Peter Verburg.

Electronic supplementary material

ESM 1

(PDF 769 kb)

ESM 2

(PDF 813 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández, F.J., Blanco, M., Ponce, R.D. et al. Implications of climate change for semi-arid dualistic agriculture: a case study in Central Chile. Reg Environ Change 19, 89–100 (2019). https://doi.org/10.1007/s10113-018-1380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-018-1380-0

Keywords

  • Adaptation
  • Climate change
  • Dualistic agriculture
  • Farm household heterogeneity
  • Semi-arid regions