Advertisement

Changes in offshore wind power potential over the Mediterranean Sea using CORDEX projections

  • Ines Alvarez
  • Maria Nieves Lorenzo
Original Article

Abstract

This study investigates changes in wind power potential by 2060 over the Mediterranean Basin under two future scenarios (RCP 4.5 and RCP 8.5) using wind simulations from the EURO-CORDEX project (12.5 km). An annual and seasonal increase in wind power was observed over the Aegean Sea and the Gulf of Lion in both scenarios, with significant values obtaining only over the former region. The most significant increases occurred in spring and summer over the Aegean Sea, while the highest positive values of wind power potential over the Gulf of Lion were observed during autumn and winter. On the contrary, wind power was observed to decrease in the central part of the Basin, with significant differences in winter and autumn in both scenarios.

Keywords

Wind energy CORDEX Warming scenarios Mediterranean 

Notes

Funding information

This work was partially supported by the Xunta de Galicia under the project Programa de Consolidación e Estruturación de Unidades de Investigación (Grupos de Referencia Competitiva) funded by European Regional Development Fund (FEDER).

Supplementary material

10113_2018_1379_MOESM1_ESM.pdf (573 kb)
ESM 1 (PDF 573 kb)

References

  1. Annan JD, Hargreaves JC (2010) Reliability of the CMIP3 ensemble. Geophys Res Lett 37(L02703):1–5.  https://doi.org/10.1029/2009GL041994 CrossRefGoogle Scholar
  2. Bloom A, Kotroni V, Lagouvardos K (2008) Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Nat Hazards Earth Syst Sci 8:1249–1257.  https://doi.org/10.5194/nhess-8-1249-2008 CrossRefGoogle Scholar
  3. Davy R, Gnatiuk N, Pettersson L, Bobylev L (2017) Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew Sust Energ Rev 81:1652–1659.  https://doi.org/10.1016/j.rser.2017.05.253 CrossRefGoogle Scholar
  4. Donat MG, Leckebusch GC, Wild S, Ulbrich U (2001) Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. Nat Hazards Earth Syst Sci 11:1351–1370.  https://doi.org/10.5194/nhess-11-1351-2011 CrossRefGoogle Scholar
  5. Engineering Sciences Data Unit (1972) Characteristics of wind speed in the lower layers of the atmosphere near ground: strong winds (neutral atmosphere). London, Regent Street, UKGoogle Scholar
  6. Flannery T (2005) The weather makers. Text Publishing, MelbourneGoogle Scholar
  7. Grams CM, Beerli R, Pfenninger S, Staffell I, Wernli H (2017) Balancing Europe/’s wind-power output through spatial deployment informed by weather regimes. Nat Clim Chang 7:557–562.  https://doi.org/10.1038/nclimate3338 CrossRefGoogle Scholar
  8. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate projections. Bull Am Meterol Soc 90(8):1095–10107.  https://doi.org/10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  9. Hoogwijk M, De Vries B, Turkenburg W (2004) Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ 26:889–919.  https://doi.org/10.1016/j.eneco.2004.04.016 CrossRefGoogle Scholar
  10. Hueging H, Rabea H, Born K, Jacob D, Pinto JG (2013) Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J Appl Meteorol Climatol 52:903–917.  https://doi.org/10.1175/JAMC-D-12-086.1 CrossRefGoogle Scholar
  11. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Deque M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kroner N, Kotlarski S, Kriegsmann A, Martin E, van Mijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Wber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  12. Kjellstrom E, Nikulin G, Hansson U, Strandberg G, Ullestig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus 63(A):24–40.  https://doi.org/10.1111/j.1600-0870.2010.00475.x CrossRefGoogle Scholar
  13. Koletsis I, Kotroni V, Lagouvardos K, Soukissian T (2016) Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Sustain Energy Rev 60:234–245.  https://doi.org/10.1016/j.rser.2016.01.080 CrossRefGoogle Scholar
  14. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  15. Nolan P, Lynch P, McGrath R, Semmler T, Wang S (2011) Simulating climate change and its effects on the wind energy resource of Ireland, simulating climate change and its effects on the wind energy resource of Ireland. Wind Energy 15(4):593–608.  https://doi.org/10.1002/we.489 CrossRefGoogle Scholar
  16. Outten SD, Esau I (2013) Extreme winds over Europe in the ENSEMBLES regional climate models. Atmos Chem Phys 13:5163–5172.  https://doi.org/10.5194/acp-13-5163-2013 CrossRefGoogle Scholar
  17. Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate studies. Proc Natl Acad Sci 106(21):8441–8446.  https://doi.org/10.1073/pnas.0900094106 CrossRefGoogle Scholar
  18. PRINCIPLEPOWER (2017) ‘WindFloat’, URL available from: http://www.principlepowerinc.com/ (acces July 2017)
  19. Pryor SC, Schoof JT, Barthelmie RJ (2005) Empirical downscaling of wind speed probability distributions. J Geophys Res 110(D19109):1–12.  https://doi.org/10.1029/2005JD005899 CrossRefGoogle Scholar
  20. Pryor SC, Schoof JT, Barthelmie RJ (2006) Winds of change?: projections of near-surface winds under climate change scenarios. Geophys Res Abstr 33(L11702):1–5.  https://doi.org/10.1029/2006GL026000 CrossRefGoogle Scholar
  21. Pryor SC, Barthelmie RJ, Clausen NE, Drews M, MacKellar N, Kjellstrom E (2012) Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Clim Dyn 38:189–208.  https://doi.org/10.1007/s00382-010-0955-3 CrossRefGoogle Scholar
  22. Raisanen J, Palmer TN (2001) A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J Clim 14:3212–3226.  https://doi.org/10.1175/1520-0442(2001)014<3212:APADMA>2.0.CO;2 CrossRefGoogle Scholar
  23. Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble or RCM simulations. Clim Chang 81:267–280.  https://doi.org/10.1007/s10584-006-9227-y CrossRefGoogle Scholar
  24. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192.  https://doi.org/10.1029/2000JD900719 CrossRefGoogle Scholar
  25. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of Cmip5 and the experiment design. Bull Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/Bams-D-11-00094.1 CrossRefGoogle Scholar
  26. Tobin I, Vautard R, Balog I, Breon F-M, Jerez S, Ruti P-M, Thais F, Vrac M, Yiou P (2015) Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim Chang 128(1–2):99–112.  https://doi.org/10.1007/s10584-014-1291-0 CrossRefGoogle Scholar
  27. Wind Europe asbl/vzw (2017) Association for wind energy in Europe. URL available from: https://windeurope.org. (Acces July 2017)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EPhysLab, Facultade de CienciasUniversidade de VigoOurenseSpain
  2. 2.CESAM, Departamento de FísicaUniversidade de AveiroAveiroPortugal

Personalised recommendations