Advertisement

Regional Environmental Change

, Volume 18, Issue 7, pp 2105–2115 | Cite as

Cropland patchiness strongest agricultural predictor of bird diversity for multiple guilds in landscapes of Ontario, Canada

  • Barbara Frei
  • Elena M. Bennett
  • Jeremy T. Kerr
Original Article

Abstract

The potential for agricultural landscapes to support biodiversity may vary greatly based on agricultural land use. Current knowledge suggests that agricultural composition and intensity are dominant drivers of biodiversity in agricultural landscapes, with variable effects of agricultural configuration and landscape diversity. The aim of this study was to determine the relative effects of agricultural composition, intensity, configuration, and landscape diversity on the species diversity of six distinct bird guilds on the landscape scale in a large and complex landscape in Ontario, Canada. We found that agricultural configuration, specifically patchiness of croplands, and to a lesser degree forage lands, was the strongest predictor of bird diversity for three of the six bird guilds considered (forest, shrubland, and town). The effects of increased cropland patchiness were variable, with forest and shrubland bird diversity increasing from small to moderate patchiness, and town bird diversity declining from moderate to high patchiness. Grassland birds, a group of considerable conservation concern, increased near linearly with increased agricultural land cover in the landscape, highlighting the need to consider agricultural lands in conservation planning for this species group. Woodland bird diversity declined significantly with all increasing measures of agricultural intensity, including the proportion of high-intensity agriculture and larger patches of agricultural land. Wetland birds were unique from the other guilds, showing primarily a strong association between diversity of land cover types and guild-level bird diversity. Surprisingly, increased cover of agricultural lands, which we predicted to be a dominant driver of guild-level bird diversity declines due to habitat loss, had weak, non-significant effects relative to the other land use variable being tested, except for the positive association with grassland birds. Our findings suggest that a mix of management strategies should be employed to consider the varying effects of agricultural lands on different bird guilds, such as the inclusion of agricultural land in conservation strategies for grassland species and further managing the configuration of agricultural lands to enhance biodiversity of agricultural landscapes.

Keywords

Agriculture Biodiversity Breeding Bird Atlas Composition Configuration Landscape diversity 

Notes

Acknowledgements

The authors thank Eric Pedersen for statistical advice, to the official sponsors of the Ontario Breeding Bird Atlas (Bird Studies Canada, Canadian Wildlife Service, Federation of Ontario Naturalists, Ontario Field Ornithologists, and Ontario Ministry of Natural Resources) for supplying Atlas data, and to the thousands of volunteer participants who gathered data for the project. Lastly, we would like to thank two anonymous reviewers whose comments greatly improved earlier drafts of this paper.

Funding information

BF was supported by a Postdoctoral Fellowship from the Fonds québécois de la recherche sur la nature et technologies (FRQNT). EMB and JTK are grateful for NSERC Discovery Grant research support. JTK is also supported by the University of Ottawa Research Chair in Macroecology and Conservation, and EMB by a EWR Steacie Fellowship.

Supplementary material

10113_2018_1343_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1862 kb)

References

  1. Anderson D, Link W, Johnson D, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manag 65:373–378.  https://doi.org/10.2307/3803088 CrossRefGoogle Scholar
  2. Andersson E, Lindborg R (2014) Species richness and assemblages in landscapes of different farming intensity—time to revise conservation strategies? PLoS One 9:e109816.  https://doi.org/10.1371/journal.pone.0109816 CrossRefGoogle Scholar
  3. Askins RA, Chávez-Ramírez F, Dale BC et al (2007) Conservation of grassland birds in North America : understanding ecological processes in different regions. Ornithol Monogr 64:1–46.  https://doi.org/10.2307/3803088 CrossRefGoogle Scholar
  4. Balmford A, Green RE, Scharlemann JPW (2005) Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob Chang Biol 11:1594–1605.  https://doi.org/10.1111/j.1365-2486.2005.001035.x CrossRefGoogle Scholar
  5. Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264.  https://doi.org/10.1016/j.biocon.2006.06.008 CrossRefGoogle Scholar
  6. Bennett E, Carpenter S, Gordon L, Ramankutty N, Balvanera P, Campbell B, Cramer W, Foley J, Folke C, Karlberg L, Liu J, Lotze-Campen H, Mueller ND, Peterson GD, Polasky S, Rockström J, Scholes RJ, Spierenburg M (2014) Toward a more resilient agriculture. Solutions 5:65–75Google Scholar
  7. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188.  https://doi.org/10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  8. Brose U (2003) Regional diversity of temporary wetland carabid beetle communities : a matter of landscape features or cultivation intensity? Agric Ecosyst Environ 98:163–167.  https://doi.org/10.1016/S0167-8809(03)00078-1 CrossRefGoogle Scholar
  9. Cadman M, Sutherland D, Beck G, LePage D, Couturier A (2007) Atlas of the breeding birds of Ontario, 2001–2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto, ONGoogle Scholar
  10. Cerezo A, Conde MC, Poggio SL (2011) Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers Conserv 20:2649–2667.  https://doi.org/10.1007/s10531-011-0096-y CrossRefGoogle Scholar
  11. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffen-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108:8311–8316.  https://doi.org/10.1073/pnas.1016799108 CrossRefGoogle Scholar
  12. Coppedge BR, Engle DM, Masters RE, Gregory MS (2001) Avian response to landscape change in fragmented southern Great Plains grasslands. Ecol Appl 11:47–59. https://doi.org/10.1890/1051-0761(2001)011[0047:ARTLCI]2.0.CO;2Google Scholar
  13. Coristine LE, Kerr JT (2011) Habitat loss, climate change, and emerging conservation challenges in Canada. Can J Zool 451:435–451.  https://doi.org/10.1139/Z11-023 CrossRefGoogle Scholar
  14. Cornell Lab of Ornithology (2018) All about birds. https://www.allaboutbirds.org
  15. Cunningham SA, Attwood SJ, Bawa KS, Benton TG, Broadhurst LM, Didham RK, McIntyre S, Perfecto I, Samways MJ, Tscharntke T, Vandermeer J, Villard M-A, Young AG, Lindenmayer DB (2013) To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agric Ecosyst Environ 173:20–27.  https://doi.org/10.1016/j.agee.2013.04.007 CrossRefGoogle Scholar
  16. Devictor V, Jiguet F (2007) Community richness and stability in agricultural landscapes: the importance of surrounding habitats. Agric Ecosyst Environ 120:179–184.  https://doi.org/10.1016/j.agee.2006.08.013 CrossRefGoogle Scholar
  17. Devictor V, Julliard R, Clavel J, Jiguet F, Lee A, Couvet D (2008) Functional biotic homogenization of bird communities in disturbed landscapes. Glob Ecol Biogeogr 17:252–261.  https://doi.org/10.1111/j.1466-8238.2007.00364.x CrossRefGoogle Scholar
  18. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Biol Sci 268:25–29.  https://doi.org/10.1098/rspb.2000.1325 CrossRefGoogle Scholar
  19. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175.  https://doi.org/10.2307/3544901 CrossRefGoogle Scholar
  20. Durán A, Duffy J, Gaston K (2014) Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation. Proc R Soc B Biol Sci 281:20141529.  https://doi.org/10.1098/rspb.2014.1529 CrossRefGoogle Scholar
  21. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663.  https://doi.org/10.1111/jbi.12130 CrossRefGoogle Scholar
  22. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112.  https://doi.org/10.1111/j.1461-0248.2010.01559.x CrossRefGoogle Scholar
  23. Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S, King D, Freemark Lindsay K, Mitchell S, Tischendorf L (2017) Reframing the food–biodiversity challenge. Trends Ecol Evol 32:335–345.  https://doi.org/10.1016/j.tree.2017.02.009 CrossRefGoogle Scholar
  24. Fischer J, Abson DJ, Bergsten A, Collier NF, Dorresteijn I, Hanspach J, Hylander K, Schultner J, Senbeta F (2017) Reframing the food–biodiversity challenge. Trends Ecol Evol 32:335–333.  https://doi.org/10.1016/j.tree.2017.02.009 CrossRefGoogle Scholar
  25. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Trautman Richers B, Lin BB, Simpson N, Mayfield MM, DeClerk F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33.  https://doi.org/10.1111/j.1461-0248.2008.01255.x CrossRefGoogle Scholar
  26. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342.  https://doi.org/10.1038/nature10452 CrossRefGoogle Scholar
  27. Frenzel M, Everaars J, Schweiger O (2016) Bird communities in agricultural landscapes: what are the current drivers of temporal trends? Ecol Indic 65:113–121.  https://doi.org/10.1016/j.ecolind.2015.11.020 CrossRefGoogle Scholar
  28. Garbach K, Milder JC, Montenegro M, Karp DS, DeClerk FAJ (2014) Biodiversity and ecosystem services in agroecosystems. Encycl Agric Food Syst 2:21–40.  https://doi.org/10.1016/B978-0-444-52512-3.00013-9 CrossRefGoogle Scholar
  29. Gerstner K, Dormann CF, Stein A, Manceur AM, Seppelt R (2014) Effects of land use on plant diversity—a global meta-analysis. J Appl Ecol 51:1690–1700.  https://doi.org/10.1111/1365-2664.12329 CrossRefGoogle Scholar
  30. Gonthier D, Ennis K, Farinas S, Hsieh HY, Iverson AL, Batáry P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B Biol Sci 281:1–8.  https://doi.org/10.1098/rspb.2014.1358 CrossRefGoogle Scholar
  31. GRASS Development Team (2015) Geographic Resources Analysis Support System (GRASS) Software, Version 6.4. Open Source Geospatial Foundation. http://grass.osgeo.org
  32. Hair JJ, Anderson R, Tatham R, Black W (1995) Multivariate data analysis, 3rd edn. Macmillian, New YorkGoogle Scholar
  33. Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351.  https://doi.org/10.1111/j.1365-2664.2006.01270.x CrossRefGoogle Scholar
  34. Hurvich C, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297.  https://doi.org/10.2307/2336663 CrossRefGoogle Scholar
  35. Jarzyna MA, Zuckerberg B, Finley AO, Porter WF (2016) Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landsc Ecol 31:1–16.  https://doi.org/10.1007/s10980-016-0399-1 CrossRefGoogle Scholar
  36. Jobin B, Choiniere L, Belanger L (2001) Bird use of three types of field margins in relation to in intensive agriculture in Québec, Canada. Agric Ecosyst Environ 84:131–143.  https://doi.org/10.1016/S0167-8809(00)00206-1 CrossRefGoogle Scholar
  37. Kerr J, Cihlar J (2004) Patterns and causes of species endangerment in Canada. Ecol Appl 14:743–753.  https://doi.org/10.1890/02-5117 CrossRefGoogle Scholar
  38. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc Biol Sci 276:903–909.  https://doi.org/10.1098/rspb.2008.1509 CrossRefGoogle Scholar
  39. Kuemmerle T, Erb K, Meyfroidt P, Müller D, Verburg PH, Estel S, Haberl H, Hostert P, Jepsen MR, Kastner T, Levers C, Lindner M, Plutzar C, Johannes Verkerk P, van der Zanden EH, Reenberg A (2013) Challenges and opportunities in mapping land use intensity globally. Curr Opin Environ Sustain 5:484–493.  https://doi.org/10.1016/j.cosust.2013.06.002 CrossRefGoogle Scholar
  40. Lamy T, Liss KN, Gonzalez A, Bennett EM (2016) Landscape structure affects the provision of multiple ecosystem services. Environ Res Lett 11:124017.  https://doi.org/10.1088/1748-9326/11/12/124017 CrossRefGoogle Scholar
  41. Marra G, Wood SN (2012) Coverage properties of confidence intervals for generalized additive model components. Scand J Stat 39:53–74.  https://doi.org/10.1111/j.1467-9469.2011.00760.x CrossRefGoogle Scholar
  42. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509.  https://doi.org/10.1126/science.277.5325.504 CrossRefGoogle Scholar
  43. McCracken J, Reid R, Renfrew RB, Frei B, Jalava JV, Cowie A, Couturier AR (2013) Recovery strategy for the bobolink (Dolichonyx oryzivorus) and Eastern meadowlark (Sturnella magna) in Ontario. Ontario Recovery Strategy Series. Prepared for the Ontario Ministry of Natural Resources, Peterborough, OntarioGoogle Scholar
  44. Mitchell MGE, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908.  https://doi.org/10.1007/s10021-013-9647-2 CrossRefGoogle Scholar
  45. Mitchell MGE, Bennett EM, Gonzalez A (2014a) Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agric Ecosyst Environ 192:144–151.  https://doi.org/10.1016/j.agee.2014.04.015 CrossRefGoogle Scholar
  46. Mitchell MGE, Bennett EM, Gonzalez A (2014b) Forest fragments modulate the provision of multiple ecosystem services. J Appl Ecol 51:909–918.  https://doi.org/10.1111/1365-2664.12241 CrossRefGoogle Scholar
  47. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Borger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Diaz S, Echeverria-Londono S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Al P (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50.  https://doi.org/10.1038/nature14324 CrossRefGoogle Scholar
  48. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Package vegan: community ecology package. Version 1.1–221. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Ontario Breeding Bird Atlas (2001) Guide for Participants. Atlas Management Board, Federation of Ontario Naturalists, Don MillsGoogle Scholar
  50. Ontario Ministry of Natural Resources (2002) The Ontario land cover data base, Second Edition (2000). https://www.ontario.ca/data/provincial-land-cover
  51. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501.  https://doi.org/10.1126/science.1196624 CrossRefGoogle Scholar
  52. Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann N Y Acad Sci 1134:173–200.  https://doi.org/10.1196/annals.1439.011 CrossRefGoogle Scholar
  53. Pimentel D, Stachow U, Takacs DA, Brubaker HW, Dumas AR, Meaney JJ, Onsi DE, Corzilius DB (1992) Conserving biological diversity in agricultural / forestry systems. Bioscience 42:354–362CrossRefGoogle Scholar
  54. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond Ser B Biol Sci 365:2959–2971.  https://doi.org/10.1098/rstb.2010.0143 CrossRefGoogle Scholar
  55. R Core Development Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org
  56. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:1–19.  https://doi.org/10.1029/2007GB002952 CrossRefGoogle Scholar
  57. Raudsepp-Hearne C, Peterson GD, Tengö M, Bennett EM, Holland T, Benessaiah K, MacDonald GK, Pfeifer L (2010) Untangling the environmentalist’s paradox: why is human well-being increasing as ecosystem services degrade? Bioscience 60:576–589.  https://doi.org/10.1525/bio.2010.60.8.4 CrossRefGoogle Scholar
  58. Rosenberg KV, Kennedy JA, Dettmers R, Ford RP, Reynolds D, Alexander JD, Beardmore DJ, Blancher PJ, Bogart RE, Butcher GS, Camfield AF, Couturier A, Demarest DW, Easton WE, Giocomo JJ, Keller RH, Mini AE, Panjabi AO, Pashley DN, Rich TD, Ruth JM, Stabins H, Stanton J, Will T (2016) Partners in Flight Landbird Conservation Plan: 2016 revision for Canada and Continental United States. Partners in Flight Science CommitteeGoogle Scholar
  59. Sanderson FJ, Kucharz M, Jobda M, Donald PF (2013) Impacts of agricultural intensification and abandonment on farmland birds in Poland following EU accession. Agric Ecosyst Environ 168:16–24.  https://doi.org/10.1016/j.agee.2013.01.015 CrossRefGoogle Scholar
  60. Santana J, Reino L, Stoate C, Moreira F, Ribeiro PF, Santos JL, Rotenberry JT, Beja P (2017) Combined effects of landscape composition and heterogeneity on farmland avian diversity. Ecol Evol 1212–1223. doi: https://doi.org/10.1002/ece3.2693
  61. Sekercioğlu CH, Loarie SR, Oviedo Brenes F, Ehrlich PR, Daily GC (2007) Persistence of forest birds in the Costa Rican agricultural countryside. Conserv Biol 21:482–494.  https://doi.org/10.1111/j.1523-1739.2007.00655.x CrossRefGoogle Scholar
  62. Seppelt R, Beckmann M, Ceauşu S, Cord AF, Gerstner K, Gurevitch J, Kambach S, Klotz S, Mendenhall C, Phillips HRP, Powell K, Verburg PH, Verhagen W, Winter M, Newbold T (2016) Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. Bioscience 66:890–896.  https://doi.org/10.1093/biosci/biw004 CrossRefGoogle Scholar
  63. Sutcliffe LME, Batáry P, Kormann U, Báldi A, Dicks LV, Herzon I, Kleijn D, Tryjanowski P, Apostolova I, Arlettaz R, Aunins A, Aviron S, Baležentienė L, Fischer C, Halada L, Hartel T, Helm A, Hristov I, Jelaska SD, Kaligarič M, Kamp J, Klimek S, Koorberg P, Kostiuková J, Kovács-Hostyánszki A, Kuemmerle T, Leuschner C, Lindborg R, Loos J, Maccherini S, Marja R, Máthé O, Paulini I, Proença V, Rey-Benayas J, Sans FX, Seifert C, Stalenga J, Timaeus J, Török P, van Swaay C, Viik E, Tscharntke T (2015) Harnessing the biodiversity value of central and eastern European farmland. Divers Distrib 21:722–730.  https://doi.org/10.1111/ddi.12288 CrossRefGoogle Scholar
  64. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann M, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity / diversity : the importance of keystone structures. J Biogeogr 31:79–92.  https://doi.org/10.1046/j.0305-0270.2003.00994.x CrossRefGoogle Scholar
  65. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677.  https://doi.org/10.1038/nature01014 CrossRefGoogle Scholar
  66. Tryjanowski P, Hartel T, Báldi A, Szymański P, Tobolka M, Herzon I, Goławski A, Konvička M, Hromada M, Jerzak L, Kujawa K, Lenda M, Orłowski G, Panek M, Skórka P, Sparks TH, Tworek S, Wuczyński S, Żmihorski M (2011) Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol 46:1–12.  https://doi.org/10.3161/000164511X589857 CrossRefGoogle Scholar
  67. VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2015) Package SDMTools: tools for processing data associated with species distribution modelling exercises. Version 1.1–221. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  68. Wang H, McCaig TN, DePauw RM, Clarke FR, Clarke JM (2002) Physiological characteristics of recent Canada Western Red Spring wheat cultivars: yield components and dry matter production. Can J Plant Sci 82:299–306.  https://doi.org/10.4141/P01-107 CrossRefGoogle Scholar
  69. Wood S (2010) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Stat Methodol Ser B 73:3–36.  https://doi.org/10.1111/j.1467-9868.2010.00749.x CrossRefGoogle Scholar
  70. Wood S (2017) Package mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. . Version 1.1–221 R Foundation for Statistical Computing, ViennaGoogle Scholar
  71. Wright HL, Lake IR, Dolman PM (2012) Agriculture—a key element for conservation in the developing world. Conserv Lett 5:11–19.  https://doi.org/10.1111/j.1755-263X.2011.00208.x CrossRefGoogle Scholar
  72. Wuczyński A, Kujawa K, Dajdok Z, Grzesiak W (2011) Species richness and composition of bird communities in various field margins of Poland. Agric Ecosyst Environ 141:202–209.  https://doi.org/10.1016/j.agee.2011.02.031 CrossRefGoogle Scholar
  73. Yan L, Roy DP (2016) Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens Environ 172:67–86.  https://doi.org/10.1016/j.rse.2015.10.034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada
  2. 2.Department of BiologyUniversity of OttawaOttawaCanada

Personalised recommendations