Regional Environmental Change

, Volume 18, Issue 4, pp 1047–1057 | Cite as

From mixed farming to intensive agriculture: energy profiles of agriculture in Quebec, Canada, 1871–2011

  • Lluis Parcerisas
  • Jérôme Dupras
Original Article


This article presents an energy analysis of Quebec agroecoystems at five periods of time: 1871, 1931, 1951, 1981, and 2011, calculating for each year the various energy flows and their resulting Energy Return on Investment (EROI). In the nineteenth century, Quebec agroecosystems were typical examples of historical organic agriculture, with a low dependence on external Inputs but a high dependence on biomass reused, mainly livestock feed and crop seeds. Following the full industrialization of Quebec agriculture by the 1960s, there have been massive injections of external inputs, but also steadily rising amounts of biomass reused due to livestock specialization and the decoupling of domesticated animals from crop farming. As a result of this transformation, the energy efficiency of agroecosystems diminished, despite the significant increases in both final produce and area productivity that were achieved.


Energy analysis Energy Return On Investment (EROI) in farm systems Sociometabolic profiles Energy transitions Energy productivity Sustainability 



This work has been supported by le Jour de la Terre Québec and arises from the international research project on Sustainable Farm Systems: Long-Term Socio-Ecological Metabolism in Western Agriculture funded by the Social Sciences and Humanities Research Council of Canada SFS 895-2011-1020. The authors are also extremely grateful to the help given by Enric Tello, Roc Padró, and Inés Marco in the construction of the EROIs.

Supplementary material

10113_2018_1305_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 28 kb)


  1. Acton DF, Gregorich LJ (1995) The health of our soils—towards sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, OttawaCrossRefGoogle Scholar
  2. Aguilera A, Guzmán GI, Infante-Amate J, Soto D, García-Ruiz R, Herrera A, Villa I, Torremocha E, Carranza G, González de Molina M (2015) Embodied energy in agricultural inputs. Incorporating a historical perspective. Working Paper of the Sociedad Española de Historia Agraria DT-SEHA 1507. Accessed 29 January 2018
  3. Boudreau C, Courville S, Séguin N (1997) Atlas historique du Québec. Le territoire. Les presses de l'Université Laval, Sainte-FoyGoogle Scholar
  4. Courville S, Robert JC, Séguin N (1995) Atlas historique du Québec. Le pays laurentien au XIXe siècle. Les presses de l'Université Laval, Sainte-FoyGoogle Scholar
  5. Courville S (2000) Le Québec. Genèse et mutations du territoire. Les Presses de l’Université Laval, Sainte-FoyGoogle Scholar
  6. Cunfer G (2004) Manure matters on the Great Plains frontier. J Interdiscip Hist 34:539–567. CrossRefGoogle Scholar
  7. Dupras J, Marull J, Parcerisas L, Coll F, Gonzalez A, Girard M, Tello E (2016) The impacts of urban sprawl on ecological connectivity in the Montreal metropolitan region. Environ Sci Pol 58:61–73. CrossRefGoogle Scholar
  8. Dyer JA, Desjardins RL (2006) An integrated index of electrical energy use in Canadian agriculture with implications for greenhouse gas emissions. Biosyst Eng 95:449–460. CrossRefGoogle Scholar
  9. Eilers W, MacKay R, Graham L, Lefebvre A (2010) Environmental sustainability of Canadian agriculture: Agri-environmental IndicatorReport series — report #3. Agriculture and Agri-Food Canada, OttawaGoogle Scholar
  10. FAO (2006) World agriculture towards 2030–2050. Prospects for food, nutrition. Agriculture and Major Commodity Groups. FAO, RomeGoogle Scholar
  11. Fédération des producteurs forestiers du Québec (2016) La forêt privée chiffrée. Accessed 29 January 2018
  12. Federico G (2005) Feeding the world: an economic history of agriculture, 1800–2000. Princeton University Press, PrincetonGoogle Scholar
  13. Fischer-Kowalski M, Haberl H (2007) Socioecological transitions and global change: trajectories of social metabolism and land use. Edward Elgar, CheltenhamCrossRefGoogle Scholar
  14. Giroux I (2003) Contamination de l’eau souterraine par les pesticides et les nitrates dans les régions en culture de pommes de terre. Direction du suivi de l’état del’environnement. Ministère de l’Environnement, Québec Accessed 29 January 2018Google Scholar
  15. González de Molina M, Toledo VM (2014) The social metabolism. A socio-ecological theory of historical change. Springer, New YorkGoogle Scholar
  16. Grigg D (1992) The transformation of agriculture in the west. Blackwell Pub, OxfordGoogle Scholar
  17. Guzmán GI, González de Molina M (2009) Preindustrial agriculture versus organic agriculture: the land cost of sustainability. Land Use Policy 26:502–510. CrossRefGoogle Scholar
  18. Guzmán G, Aguilera E, Soto D, Cid A, Infante-Amate J, García-Ruiz R, Herrera A, Villa I, González de Molina M (2014) Methodology and conversion factors to estimate the net primary productivity of historical and contemporary agroecosystems. Working papers SEHA, 14–07. Accessed 29 January 2018
  19. Guzmán GI, González de Molina M (2015) Energy efficiency in agrarian systems from an agro-ecological perspective. Agroecol Sustain Food Syst 39:924–952. CrossRefGoogle Scholar
  20. Hayes D (2015) Historical atlas of Canada: Canada’s history illustrated with original maps. Douglas & McIntyre, British ColumbiaGoogle Scholar
  21. Jobin B, Latendresse C, Grenier M, Maisonneuve C, Sebbane A (2010) Recent landscape change at the ecoregion scale in southern Québec (Canada), 1993–2001. Environ Monit Assess 164:631–647. CrossRefGoogle Scholar
  22. Jobin B, Latendresse C, Baril A, Maisonneuve C, Boutin C, Côté D (2014) A half-century analysis of landscape dynamics in southern Québec, Canada. Environ Monit Assess 186:2215–2229. CrossRefGoogle Scholar
  23. Kastner T, Kastner M, Nonhebel S (2011) Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol Econ 7:1032–1040. CrossRefGoogle Scholar
  24. Krausmann F (2004) Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in central Europe. Hum Ecol 32:35–772. CrossRefGoogle Scholar
  25. Krausmann F, Schandl H, Sieferle RP (2008) Socio-ecological regime transitions in Austria and the United Kingdom. Ecol Econ 65:187–201. CrossRefGoogle Scholar
  26. Krausmann F, Erb KH, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger TD (2013) Global human appropriation of net primary production doubled in the 20th century. PNAS 110:10324–10329. CrossRefGoogle Scholar
  27. Levallois P, Theriault UM, Rouffignat J, Tessier S, Landry R, Ayottea P, Girard M, Gingras S, Gauvin D, Chiassone C (1998) Groundwater contamination by nitrates associated with intensive potato culture in Quebec. Sci Total Environ 217:91–101. CrossRefGoogle Scholar
  28. Linteau PA, Durocher R, Robert JC (1983) Quebec: a history 1867–1929. James Lorimer & Company, TorontoGoogle Scholar
  29. Mazoyer M, Roudart L (2006) A history of world agriculture: from the Neolithic age to the current crisis. Monthly Review Press, New YorkGoogle Scholar
  30. Paquette S, Domon G (1997) The transformation of the agroforestry landscape in the nineteenth century: a case study in southern Quebec (Canada). Landsc Urban Plan 37:197–209. CrossRefGoogle Scholar
  31. Paquette S, Domon G (2001) Trends in rural landscape development and sociodemographic recomposition in southern Quebec (Canada). Landsc Urban Plan 55:215–238. CrossRefGoogle Scholar
  32. Pelletier N, Arsenault N, Tyedmers P (2008) Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: life cycle perspectives on Canadian canola, corn, soy, and wheat production. Environ Manag 42:989–1001. CrossRefGoogle Scholar
  33. Pelletier N, Audsley E, Brodt S, Garnett T, Henriksson P, Kendall A, Kramer K, Murphy D, Nemecek T, Troell M (2011) Energy intensity of agriculture and food systems. Annu Rev Environ Resour 36:223–246. CrossRefGoogle Scholar
  34. Petit HV (1993) Pasture management and animal production in Quebec. Can J Anim Sci 73:715–724. CrossRefGoogle Scholar
  35. Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic and economics comparisons of organic and conventional farming systems. Bioscience 55:573–582.[0573:EEAECO]2.0.CO;2Google Scholar
  36. Pimentel D (2009) Environmental and economic costs of the application of pesticides primarily in the United States. In: Peshin R, Dhawan A (eds) Integrated Pest management: innovation-development process. Springer, Netherlands, pp 89–111CrossRefGoogle Scholar
  37. Russell PA (2012) How agriculture made Canada. Farming in the nineteenth century. McGill-Queen's University Press, MontrealGoogle Scholar
  38. Statistics Canada (1872) Census of Canada 1870–1871, vol 1. Statistics Canada, OttawaGoogle Scholar
  39. Statistics Canada (1935) Seventh census of Canada, 1931. Quebec, census of agriculture. Statistics Canada, OttawaGoogle Scholar
  40. Statistics Canada (1953) Ninth census of Canada, 1951. Volume VI, agriculture. Statistics Canada, OttawaGoogle Scholar
  41. Statistics Canada (1982) 1981 census of Canada, agriculture, Quebec. Statistics Canada, OttawaGoogle Scholar
  42. Statistics Canada (2012) 2011 census of agriculture. Statistics Canada, OttawaGoogle Scholar
  43. Tello E, Cattaneo C (2017) The energy trap of the green revolution. Energy profiles of past and present farm systems from a comparative perspective. 12th Conference of the European Society for Ecological Economics, 20–23 June, 2017, BudapestGoogle Scholar
  44. Tello E, Galán E, Cunfer G, Guzmán GI, González de Molina M, Krausmann F, Gingrich S, Marco I, Padró R, Sacristán V, Moreno-Delgado D (2015) A proposal for a workable analysis of Energy Return On Investment (EROI) in agroecosystems. Social Ecology Working Paper 156. Accessed on 29 January 2018
  45. Tello E, Jover G (2014) Economic history and the environment: new questions, approaches and methodologies for the environmental and economic history of pre-industrial and industrial societies. In: Agnoletti M, Neri S (eds) The basic environmental history. Springer International Publishing, Switzerland, pp 31–76Google Scholar
  46. Tello E, Galán E, Sacristán V, Cunfer G, Guzmán GI, González de Molina M, Krausmann F, Gingrich S, Padró R, Marco I, Moreno-Delgado D (2016) Opening the black box of energy throughputs in farm systems: a decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed. Ecol Econ 121:160–174. CrossRefGoogle Scholar
  47. Van Bochove E, Thériault G, Dechmi F, Leclerc ML, Goussard N (2007) Indicator of risk of water contamination by phosphorus: temporal trends for the province of Quebec from 1981 to 2001. Can J Soil Sci 87:121–128. CrossRefGoogle Scholar
  48. Woods J, Williams A, Hughes JK, Black M, Murphy R (2010) Energy and the food system. Philos Trans R Soc B 365:2991–3006. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des sciences de la forêt tempérée (ISFORT)Université du Québec en OutaouaisQuébecCanada

Personalised recommendations