Grazing, forest density, and carbon storage: towards a more sustainable land use in Caatinga dry forests of Brazil

Abstract

Grazing is the main land use in semi-arid regions of the world, and sustainable management practices are urgently needed to prevent their degradation. However, how different grazing intensities affect forest density and ecosystem functions is often not sufficiently understood to allow for management adaptations that safeguard the ecosystems and their functions in the long run. We assessed the aboveground carbon stocks and plant densities along a grazing gradient in the semi-arid seasonally dry tropical forest of north-eastern Brazil (Caatinga). On 45 study plots, we analysed the aboveground carbon stocks of the vegetation and determined forest density and recruitment as well as the population structure of the most abundant tree species. Grazing intensity was accounted for based on the weight of livestock droppings and classified as low, intermediate, or high. Mean aboveground carbon stock was 15.74 ± 1.92 Mg ha−1 with trees and shrubs accounting for 89% of the total amount. Grazing at high intensities significantly reduced aboveground carbon stocks of herbs but not of other plant functional types. Instead, aboveground carbon stocks of trees and shrubs were negatively related to altitude above sea level, which is a proxy for reduced water availability along with lower anthropogenic impact. The population structure of the most common tree species was characterised by abundant recruitment, irrespective of grazing, whereas the recruitment of less frequent woody species was negatively affected by grazing. Overall, our data imply that grazing and forage management need to be adapted, including the reduction of free-roaming livestock and storage of fodder, to maintain carbon storage and forest density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Núñez MJ, Muñiz M (2012) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.x

    Article  Google Scholar 

  2. Albuquerque UPD, Andrade LDHC, Silva ACOD (2005) Use of plant resources in a seasonal dry forest (Northeastern Brazil). Acta Bot Bras 19:27–38

    Article  Google Scholar 

  3. Albuquerque SGD, Soares JGG, Guimarães Filho C (2008) Effect of grazing by steers and a long drought on a caatinga ligneous stratum in semi-arid northeast, Brazil. Revista Caatinga 21:17–28

    Google Scholar 

  4. Allen VG, Batello C, Berretta EJ, Hodgson J, Kothmann M, Li X, McIvor J, Milne J, Morris C, Peeters A, Sanderson M (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28. https://doi.org/10.1111/j.1365-2494.2010.00780.x

    Article  Google Scholar 

  5. Althoff TD, Menezes RSC, de Carvalho AL, de Siqueira Pinto A, Santiago GACF, Ometto JPHB, von Randow C, Sampaio EVSB (2016) Climate change impacts on the sustainability of the firewood harvest and vegetation and soil carbon stocks in a tropical dry forest in Santa Teresinha Municipality, Northeast Brazil. For Ecol Manag 360:367–375. https://doi.org/10.1016/j.foreco.2015.10.001

    Article  Google Scholar 

  6. Alves JJA, de Araújo MA, do Nascimento SS (2009) Degradação da Caatinga: uma investigação ecogeográfica. Revista Caatinga 22:126–135

    Google Scholar 

  7. Amorim IL, Sampaio EVSB, de Lima Araújo E (2005) Flora e estrutura da vegetação arbustivo-arbórea de uma área de caatinga do Seridó, RN, Brasil. Acta Bot Bras 19:615–623

    Article  Google Scholar 

  8. Araújo Filho JA (2013) Manejo pastoril sustentável da Caatinga. Projeto Dom Helder Camara, Recife, pp 119–144

    Google Scholar 

  9. Araújo Filho JAD, Leite ER, Silva ND (1998) Contribution of woody species to the diet composition of goat and sheep in Caatinga vegetation. Pasture Tropicalis 20:41–45

    Google Scholar 

  10. Araujo KD, Dantas RT, de Andrade AP, Parente HN, Érllens ÉS (2010) Uso de espécies da Caatinga na alimentação de rebanhos município de São João do Cariri – PB. Raega-O Espaço Geográfico em Análise 20:157–171. https://doi.org/10.5380/raega.v20i0.20619

    Article  Google Scholar 

  11. Bailey DW, Brown JR (2011) Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands. Rangel Ecol Manag 64:1–9. https://doi.org/10.2111/REM-D-09-00184.1

    Article  Google Scholar 

  12. Bergmeier E, Petermann J, Schröder E (2010) Geobotanical survey of wood-pasture habitats in Europe: diversity, threats and conservation. Biodivers Conserv 19:2995–3014. https://doi.org/10.1007/s10531-010-9872-3

    Article  Google Scholar 

  13. Braga BPF, Gondim Filho JGC, Sugai MRVB, Costa SV, Rodrigues V (2012) Impacts of Sobradinho Dam, Brazil. In: Tortajada C, Altinbilek D, Biswas AK (eds) Impacts of large dams. A global assessment, Springer Berlin, pp 153–170

  14. Cierjacks A, Hensen I (2004) Variation of stand structure and regeneration of Mediterranean holm oak along a grazing intensity gradient. Plant Ecol 173:215–223. https://doi.org/10.1023/B:VEGE.0000029322.75004.ad

    Article  Google Scholar 

  15. Cierjacks A, Rühr NK, Wesche K, Hensen I (2008) Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecol 194:207–221. https://doi.org/10.1007/s11258-007-9285-x

    Article  Google Scholar 

  16. Cierjacks A, Kleinschmit B, Babinsky M, Kleinschroth F, Markert A, Menzel M, Ziechmann U, Schiller T, Graf M, Lang F (2010) Carbon stocks of soil and vegetation on Danubian floodplains. J Plant Nutr Soil Sci 173:644–653. https://doi.org/10.1002/jpln.200900209

    CAS  Article  Google Scholar 

  17. Cierjacks A, Pommeranz M, Schulz K, Almeida-Cortez J (2016) Is crop yield related to weed species diversity and biomass in coconut and banana fields of northeastern Brazil? Agric Ecosyst Environ 220:175–183. https://doi.org/10.1016/j.agee.2016.01.006

    Article  Google Scholar 

  18. Crawley MJ (2007) The R book, 1st edn. John Wiley & Sons

  19. da Silva FKG, de Faria Lopes S, Lopez LCS, de Melo JIM, Trovão DMDBM (2014) Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. J Arid Environ 110:47–52. https://doi.org/10.1016/j.jaridenv.2014.05.011

    Article  Google Scholar 

  20. Embrapa (Empresa Brasileira de Pesquisa Agropecuária Ministério da Agricultura, Pecuária e Abastecimento) (2001a) Mapa Exploratório-Reconhecimento de solos do município de Floresta, PE. http://www.uep.cnps.embrapa.br/solos/pe/floresta.pdf. Accessed October 2013

  21. Embrapa (Empresa Brasileira de Pesquisa Agropecuária Ministério da Agricultura, Pecuária e Abastecimento) (2001b) Mapa Exploratório-Reconhecimento de solos do município de Itacuruba, PE. http://www.uep.cnps.embrapa.br/solos/pe/itacuruba.pdf. Accessed October 2013

  22. FAO (Food and Agriculture Organization of the United Nations) (2001) Lecture notes on the major soils of the world. Driessen P, Deckers J, Spaargaren O, Nachtergaele F (eds) http://www.fao.org/3/a-y1899e.pdf. Accessed Sept 2016

  23. Fleming GM, Wunderle Jr JM, Ewert DN (2016) Diet preferences of goats in a subtropical dry forest and implications for habitat management. Trop Ecol 57:279–297

    Google Scholar 

  24. Freitas ADS, Sampaio EVSB, Silva BLR, Almeida-Cortez JS, Menezes RSC (2012) How much nitrogen is fixed by biological symbiosis in tropical dry forests? 2. Herbs. Nutr Cycl Agroecosyst 94:181–192. https://doi.org/10.1007/s10705-012-9545-6

    CAS  Article  Google Scholar 

  25. González-Pech PG, Jesús Torres-Acosta JF, Sandoval-Castro CA, Tun-Garrido J (2015) Feeding behavior of sheep and goats in a deciduous tropical forest during the dry season: the same menu consumed differently. Small Rumin Res 133:128–134. https://doi.org/10.1016/j.smallrumres.2015.08.020

    Article  Google Scholar 

  26. Google Earth, version 7.1.2.2041 (2013) http://www.google.com/earth/index.html. Accessed Oct 2013

  27. Hagel H, Hoffmann C, Doluschitz R (2014) Mathematical programming models to increase land and water use efficiency in semi-arid NE-Brazil. Int J Food Syst Dyn 5:173–181. https://doi.org/10.18461/ijfsd.v5i4.542

    Article  Google Scholar 

  28. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chang 109:117–161. https://doi.org/10.1007/s10584-011-0153-2

    Article  Google Scholar 

  29. Ibáñez J, Martínez J, Schnabel S (2007) Desertification due to overgrazing in a dynamic commercial livestock–grass–soil system. Ecol Model 205:277–288. https://doi.org/10.1016/j.ecolmodel.2007.02.024

    Article  Google Scholar 

  30. Junior FTA, Ferreira RLC, Marangon LC, Silva JAA, Gutiérrez-Céspedes HG (2013) Structure evaluation of the Caatinga vegetation for sustainable forest management in the municipality of Floresta, Pernambuco, Brazil. In: Gunkel G, Silva JAA, Sobral MC (eds) Sustainable management of water and land in semiarid areas. Editora Universitária UFPE, Recife, pp 186–202

    Google Scholar 

  31. Kauffman JB, Sanford RL, Cummings DL, Salcedo IH, Sampaio EVSB (1993) Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74:140–151. https://doi.org/10.2307/1939509

    Article  Google Scholar 

  32. Kengen S, Pareyn F, Barcellos NDE, Campello FCB (2000) Forest management in a semi-arid region in Brazil: a case study of the state of Rio Grande do Norte. In: Dore MHI, Guevara R (eds) Sustainable forest management and global climate change: selected case studies from the Americas. Edward Elgar Pub, Cheltenham, pp 261–269

    Google Scholar 

  33. Köhl M, Lasco R, Cifuentes M, Jonsson Ö, Korhonen KT, Mundhenk P, Navar JJ, Stinson G (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. For Ecol Manag 352:21–34. https://doi.org/10.1016/j.foreco.2015.05.036

    Article  Google Scholar 

  34. Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. In: Apps MJ, Price D, Wisniewski J (eds) Boreal forests and global change. Springer, Netherlands, pp 227–238. https://doi.org/10.1007/978-94-017-0942-2_24

    Google Scholar 

  35. Kyriazopoulos AP, Sklavou P, Nastis AS, Papanastasis VP (2009) Interactions between grazing behaviour and plant community structure in shrubland and their consequences on desertification. In: Papachristou TG, Parissi ZM, Ben Salem H, Morand-Fehr P (eds) Nutritional and foraging ecology of sheep and goats, Zaragoza : CIHEAM / FAO / NAGREF (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 85), pp 91–97

  36. Leal IR, da Silva JMC, Tabarelli M, Lacher TE (2005) Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv Biol 19:701–706. https://doi.org/10.1111/j.1523-1739.2005.00703.x

    Article  Google Scholar 

  37. Liniger HP, Mekdaschi Studer R, Moll P, Zander U (2017) Making sense of research for sustainable land management. Centre for Development and Environment (CDE), University of Bern, Switzerland and Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany

  38. Lucena RF, Albuquerque UP, Monteiro JM, Almeida CFCBR, Florentino AT, Ferraz JSF (2007) Useful plants of the semi-arid northeastern region of Brazil—a look at their conservation and sustainable use. Environ Monit Assess 125:281–290. https://doi.org/10.1007/s10661-006-9521-1

    Article  Google Scholar 

  39. Manzano MG, Návar J (2000) Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral) in north-eastern Mexico. J Arid Environ 44:1–17. https://doi.org/10.1006/jare.1999.0577

    Article  Google Scholar 

  40. Marengo JA, Chou SC, Torres RR, Giarolla A, Alves LM, Lyra A (2014) Climate change in Central and South America: recent trends, future projections, and impacts on regional agriculture. CCAFS Working Paper no. 73. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org

  41. Marinho FP, Mazzochini GG, Manhães AP, Weisser WW, Ganade G (2016) Effects of past and present land use on vegetation cover and regeneration in a tropical dryland forest. J Arid Environ 132:26–33. https://doi.org/10.1016/j.jaridenv.2016.04.006

    Article  Google Scholar 

  42. Menezes RSC, Sampaio EVSB, Giongo V, Pérez-Marin AM (2012) Biogeochemical cycling in terrestrial ecosystems of the Caatinga biome. Braz J Biol 72:643–653. https://doi.org/10.1590/S1519-69842012000400004

    CAS  Article  Google Scholar 

  43. MMA (Ministério do Meio Ambiente) (2010) Monitoramento do desmatamento nos biomas brasileiros por satélite – Monitoramento do bioma Caatinga entre 2002 e 2008. Ministério do Meio Ambiente (MMA) & Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). http://www.mma.gov.br/estruturas/sbf_chm_rbbio/_arquivos/relatrio_tcnico_caatinga_72.pdf. Accessed 21.09.2016

  44. MMA (Ministério do Meio Ambiente) (2011) Subsídios para a elaboração do plano de ação para a prevenção e controle do desmatamento na Caatinga. Ministério do Meio Ambiente, Brasília. http://www.mma.gov.br/estruturas/203/_arquivos/diagnostico_do_desmatamento_na_caatinga_203_2_203_1.pdf. Accessed 10.09.2015

  45. Navar J, Rodriguez-Flores F, Dominguez-Calleros PA, Perez-Verdin G (2014) Diversity-productivity relationship in the northeastern Tamaulipan thornscrub forest of Mexico. Intern J Ecol. https://doi.org/10.1155/2014/196073

  46. Nosetto MD, Jobbágy EG, Paruelo JM (2006) Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J Arid Environ 67:142–156. https://doi.org/10.1016/j.jaridenv.2005.12.008

    Article  Google Scholar 

  47. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    CAS  Article  Google Scholar 

  48. Peichl M, Arain MA (2006) Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140:51–63. https://doi.org/10.1016/j.agrformet.2006.08.004

    Article  Google Scholar 

  49. Pfister JA, Malechek JC (1986) Dietary selection by goats and sheep in a deciduous woodland of northeastern Brazil. J Range Manag 39:24–28. https://doi.org/10.2307/3899680

    Article  Google Scholar 

  50. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, LeQuéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 185–237

    Google Scholar 

  51. R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project. org. Accessed January 2016

  52. Revermann R, Wallenfang J, Oldeland J, Finckh M (2016) Species richness and evenness respond to diverging land-use patterns–a cross-border study of dry tropical woodlands in southern Africa. Afr J Ecol 55:152–161. https://doi.org/10.1111/aje.12333

    Article  Google Scholar 

  53. Rodal MJN, Martins FR, Sampaio EVSB (2008) Levantamento quantitativo das plantas lenhosas em trechos de vegetação de caatinga em Pernambuco. Revista Caatinga 21:192–205

    Google Scholar 

  54. Romano PA, Garcia EAC (1999) Policies for water-resources planning and management of the São Francisco River. In: Biswas AK, Cordeiro NV, Braga BPF, Tortajada C (eds) Management of Latin American River Basins: Amazon, Plata, and São Francisco. United Nations University Press, Tokyo, pp 245–272

    Google Scholar 

  55. Salcedo IH, Menezes RSC (2009) Agroecosystem functioning and management in semi-arid Northeastern Brazil. In: Tiessen H, Stewart JWB (eds) Applying ecological knowledge to landuse decisions. Inter-American Institute for Global Change Research - IICA-IAI-Scope, Paris, pp 73–81

    Google Scholar 

  56. Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 35–63

    Google Scholar 

  57. Sampaio EVSB (2010) Características e potencialidades. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama P (eds) Uso sustentável e conservação dos recursos florestais da caatinga. Ministério do Meio Ambiente, Brasília, pp 29–48

  58. Sampaio EVSB, Costa TL (2011) Estoques e fluxos de carbono no semi-árido nordestino: estimativas preliminares. Revista Brasileira de Geografia Física 6:1275–1291

    Google Scholar 

  59. Sampaio EVSB, Silva GC (2005) Biomass equations for Brazilian semiarid caatinga plants. Acta Bot Bras 19:935–943. https://doi.org/10.1590/S0102-33062005000400028

    Article  Google Scholar 

  60. Sampaio EVSB, Gasson P, Baracat A, Cutler D, Pareyn F, Lima KC (2010) Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. For Ecol Manag 259:1135–1140. https://doi.org/10.1016/j.foreco.2009.12.028

    Article  Google Scholar 

  61. Santana JAS, Souto JS (2006) Diversidade e estrutura fitossociológica da Caatinga na Estação Ecológica do Seridó-RN. Revista de Biologia e Ciências da Terra 6:232–242

    Google Scholar 

  62. Scheffer F, Schachtschabel P (eds) (2010) Lehrbuch der Bodenkunde, 16th edn. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  63. Schneider S, Siegmund-Schultze M, Holanda Júnior EV, Alves FSF, Valle Zárate A (2012) Is a geographical certification a promising production and commercialization strategy for smallholder sheep farming in Ceará, Brazil? J Agric Food Syst Community Dev 2:107–127. https://doi.org/10.5304/jafscd.2012.022.013

    Article  Google Scholar 

  64. Schulz K, Voigt K, Beusch C, Almeida-Cortez JS, Kowarik I, Walz A, Cierjacks A (2016) Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. For Ecol Manag 367:62–70. https://doi.org/10.1016/j.foreco.2016.02.011

    Article  Google Scholar 

  65. Schulz C, Koch R, Cierjacks A, Kleinschmit B (2017) Land change and loss of landscape diversity at the Caatinga phytogeographical domain—analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ 136:54–74. https://doi.org/10.1016/j.jaridenv.2016.10.004

    Article  Google Scholar 

  66. Sousa SCD, Oliveira VPVD, Silva JMFD, Melo RAD, Azevedo R (2013) The use of lands from small watershed of riacho Itacuruba-PE. In: Gunkel G, Silva JAA, Sobral MC (eds) Sustainable management of water and land in semiarid areas. Editora Universitária UFPE, Recife, pp 129–143

    Google Scholar 

  67. Souza Lima MCJ, Soto-Blanco B (2010) Poisoning in goats by Aspidosperma pyrifolium Mart.: biological and cytotoxic effects. Toxicon 55:320–324. https://doi.org/10.1016/j.toxicon.2009.08.004

    CAS  Article  Google Scholar 

  68. Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143:63–72. https://doi.org/10.1016/j.geoderma.2007.09.004

    CAS  Article  Google Scholar 

  69. Tavares FM, Schulz K, Pereira RCA, Cierjacks A, Almeida-Cortez JS (2016) Floristic survey of the Caatinga in areas with different grazing intensities, Pernambuco, northeast Brazil. J Environ Anal Prog 01:43–51

    Article  Google Scholar 

  70. Tiessen H, Feller C, Sampaio EVSB, Garin P (1998) Carbon sequestration and turnover in semiarid savannas and dry forest. Clim Chang 40:105–117. https://doi.org/10.1023/A:1005342932178

    CAS  Article  Google Scholar 

  71. Torres FSDM, Santos Pfaltzgraff PAD (2014) Geodiversidade do estado de Pernambuco, Programa Geologia do Brasil. Levantamento da Geodiversidade. CPRM, Recife. http://www.cprm.gov.br/publique/media/Geodiversidade_PE.pdf. Accessed 15.01.2016

  72. Winter TC (2001) The concept of hydrologic landscapes. JAWRA J Am Water Resour Assoc 37:335–349. https://doi.org/10.1111/j.1752-1688.2001.tb00973.x

    Article  Google Scholar 

  73. Zuur AF, Ieno EN, Walke, N.J, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer-Verlag, 1st edition, New York

  74. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the Federal Ministry of Education and Research (BMBF), Germany (grant number BMBF 01LL0904A/E), the Ministry of Science, Technology and Innovation of Brazil/National Council for Scientific and Technological Development (MCTi/CNPq; grant number 490003/2012-5), and the Foundation of Science and Technology of Pernambuco (FACEPE; grant number APQ—0842-2.05/12); Almeida-Cortez and Sampaio were supported by fellowships from Brazilian CNPq (grant numbers PQ—307422/2012-7 and 307717/2013-5).

We thank Karin Stock de Oliveira, Jens von dem Bussche, Pedro Guedes, and Karsten Voigt for support during field work. The Prefeitura Municipal de Itacuruba and Floresta and the Secretaria de Agricultura de Itacuruba facilitated contacts to landowners and farmers who kindly provided access to their properties. The Prefeitura Municipal de Itacuruba very kindly supported our work by providing accommodation. The team of the Herbarium Dardano de Andrade Lima (IPA) helped to identify plant species. We also thank Kelaine Ravdin for improving our English. Two anonymous reviewers made valuable comments on an earlier version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katharina Schulz.

Electronic supplementary material

ESM 1

(PDF 412 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulz, K., Guschal, M., Kowarik, I. et al. Grazing, forest density, and carbon storage: towards a more sustainable land use in Caatinga dry forests of Brazil. Reg Environ Change 18, 1969–1981 (2018). https://doi.org/10.1007/s10113-018-1303-0

Download citation

Keywords

  • Aboveground carbon stocks
  • Seasonally dry tropical forest
  • Ecosystem function
  • Semi-arid
  • Goats
  • Grazing intensity