Advertisement

Regional Environmental Change

, Volume 18, Issue 7, pp 1969–1981 | Cite as

Grazing, forest density, and carbon storage: towards a more sustainable land use in Caatinga dry forests of Brazil

  • Katharina Schulz
  • Maike Guschal
  • Ingo Kowarik
  • Jarcilene S. Almeida-Cortez
  • Everardo V. S. B. Sampaio
  • Arne Cierjacks
Original Article

Abstract

Grazing is the main land use in semi-arid regions of the world, and sustainable management practices are urgently needed to prevent their degradation. However, how different grazing intensities affect forest density and ecosystem functions is often not sufficiently understood to allow for management adaptations that safeguard the ecosystems and their functions in the long run. We assessed the aboveground carbon stocks and plant densities along a grazing gradient in the semi-arid seasonally dry tropical forest of north-eastern Brazil (Caatinga). On 45 study plots, we analysed the aboveground carbon stocks of the vegetation and determined forest density and recruitment as well as the population structure of the most abundant tree species. Grazing intensity was accounted for based on the weight of livestock droppings and classified as low, intermediate, or high. Mean aboveground carbon stock was 15.74 ± 1.92 Mg ha−1 with trees and shrubs accounting for 89% of the total amount. Grazing at high intensities significantly reduced aboveground carbon stocks of herbs but not of other plant functional types. Instead, aboveground carbon stocks of trees and shrubs were negatively related to altitude above sea level, which is a proxy for reduced water availability along with lower anthropogenic impact. The population structure of the most common tree species was characterised by abundant recruitment, irrespective of grazing, whereas the recruitment of less frequent woody species was negatively affected by grazing. Overall, our data imply that grazing and forage management need to be adapted, including the reduction of free-roaming livestock and storage of fodder, to maintain carbon storage and forest density.

Keywords

Aboveground carbon stocks Seasonally dry tropical forest Ecosystem function Semi-arid Goats Grazing intensity 

Notes

Acknowledgements

This study was financed by the Federal Ministry of Education and Research (BMBF), Germany (grant number BMBF 01LL0904A/E), the Ministry of Science, Technology and Innovation of Brazil/National Council for Scientific and Technological Development (MCTi/CNPq; grant number 490003/2012-5), and the Foundation of Science and Technology of Pernambuco (FACEPE; grant number APQ—0842-2.05/12); Almeida-Cortez and Sampaio were supported by fellowships from Brazilian CNPq (grant numbers PQ—307422/2012-7 and 307717/2013-5).

We thank Karin Stock de Oliveira, Jens von dem Bussche, Pedro Guedes, and Karsten Voigt for support during field work. The Prefeitura Municipal de Itacuruba and Floresta and the Secretaria de Agricultura de Itacuruba facilitated contacts to landowners and farmers who kindly provided access to their properties. The Prefeitura Municipal de Itacuruba very kindly supported our work by providing accommodation. The team of the Herbarium Dardano de Andrade Lima (IPA) helped to identify plant species. We also thank Kelaine Ravdin for improving our English. Two anonymous reviewers made valuable comments on an earlier version of the manuscript.

Supplementary material

10113_2018_1303_MOESM1_ESM.pdf (413 kb)
ESM 1 (PDF 412 kb)

References

  1. Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Núñez MJ, Muñiz M (2012) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262–271.  https://doi.org/10.1111/j.1744-7429.2012.00908.x CrossRefGoogle Scholar
  2. Albuquerque UPD, Andrade LDHC, Silva ACOD (2005) Use of plant resources in a seasonal dry forest (Northeastern Brazil). Acta Bot Bras 19:27–38CrossRefGoogle Scholar
  3. Albuquerque SGD, Soares JGG, Guimarães Filho C (2008) Effect of grazing by steers and a long drought on a caatinga ligneous stratum in semi-arid northeast, Brazil. Revista Caatinga 21:17–28Google Scholar
  4. Allen VG, Batello C, Berretta EJ, Hodgson J, Kothmann M, Li X, McIvor J, Milne J, Morris C, Peeters A, Sanderson M (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28.  https://doi.org/10.1111/j.1365-2494.2010.00780.x CrossRefGoogle Scholar
  5. Althoff TD, Menezes RSC, de Carvalho AL, de Siqueira Pinto A, Santiago GACF, Ometto JPHB, von Randow C, Sampaio EVSB (2016) Climate change impacts on the sustainability of the firewood harvest and vegetation and soil carbon stocks in a tropical dry forest in Santa Teresinha Municipality, Northeast Brazil. For Ecol Manag 360:367–375.  https://doi.org/10.1016/j.foreco.2015.10.001 CrossRefGoogle Scholar
  6. Alves JJA, de Araújo MA, do Nascimento SS (2009) Degradação da Caatinga: uma investigação ecogeográfica. Revista Caatinga 22:126–135Google Scholar
  7. Amorim IL, Sampaio EVSB, de Lima Araújo E (2005) Flora e estrutura da vegetação arbustivo-arbórea de uma área de caatinga do Seridó, RN, Brasil. Acta Bot Bras 19:615–623CrossRefGoogle Scholar
  8. Araújo Filho JA (2013) Manejo pastoril sustentável da Caatinga. Projeto Dom Helder Camara, Recife, pp 119–144Google Scholar
  9. Araújo Filho JAD, Leite ER, Silva ND (1998) Contribution of woody species to the diet composition of goat and sheep in Caatinga vegetation. Pasture Tropicalis 20:41–45Google Scholar
  10. Araujo KD, Dantas RT, de Andrade AP, Parente HN, Érllens ÉS (2010) Uso de espécies da Caatinga na alimentação de rebanhos município de São João do Cariri – PB. Raega-O Espaço Geográfico em Análise 20:157–171.  https://doi.org/10.5380/raega.v20i0.20619 CrossRefGoogle Scholar
  11. Bailey DW, Brown JR (2011) Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands. Rangel Ecol Manag 64:1–9.  https://doi.org/10.2111/REM-D-09-00184.1 CrossRefGoogle Scholar
  12. Bergmeier E, Petermann J, Schröder E (2010) Geobotanical survey of wood-pasture habitats in Europe: diversity, threats and conservation. Biodivers Conserv 19:2995–3014.  https://doi.org/10.1007/s10531-010-9872-3 CrossRefGoogle Scholar
  13. Braga BPF, Gondim Filho JGC, Sugai MRVB, Costa SV, Rodrigues V (2012) Impacts of Sobradinho Dam, Brazil. In: Tortajada C, Altinbilek D, Biswas AK (eds) Impacts of large dams. A global assessment, Springer Berlin, pp 153–170Google Scholar
  14. Cierjacks A, Hensen I (2004) Variation of stand structure and regeneration of Mediterranean holm oak along a grazing intensity gradient. Plant Ecol 173:215–223.  https://doi.org/10.1023/B:VEGE.0000029322.75004.ad CrossRefGoogle Scholar
  15. Cierjacks A, Rühr NK, Wesche K, Hensen I (2008) Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecol 194:207–221.  https://doi.org/10.1007/s11258-007-9285-x CrossRefGoogle Scholar
  16. Cierjacks A, Kleinschmit B, Babinsky M, Kleinschroth F, Markert A, Menzel M, Ziechmann U, Schiller T, Graf M, Lang F (2010) Carbon stocks of soil and vegetation on Danubian floodplains. J Plant Nutr Soil Sci 173:644–653.  https://doi.org/10.1002/jpln.200900209 CrossRefGoogle Scholar
  17. Cierjacks A, Pommeranz M, Schulz K, Almeida-Cortez J (2016) Is crop yield related to weed species diversity and biomass in coconut and banana fields of northeastern Brazil? Agric Ecosyst Environ 220:175–183.  https://doi.org/10.1016/j.agee.2016.01.006 CrossRefGoogle Scholar
  18. Crawley MJ (2007) The R book, 1st edn. John Wiley & SonsGoogle Scholar
  19. da Silva FKG, de Faria Lopes S, Lopez LCS, de Melo JIM, Trovão DMDBM (2014) Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. J Arid Environ 110:47–52.  https://doi.org/10.1016/j.jaridenv.2014.05.011 CrossRefGoogle Scholar
  20. Embrapa (Empresa Brasileira de Pesquisa Agropecuária Ministério da Agricultura, Pecuária e Abastecimento) (2001a) Mapa Exploratório-Reconhecimento de solos do município de Floresta, PE. http://www.uep.cnps.embrapa.br/solos/pe/floresta.pdf. Accessed October 2013
  21. Embrapa (Empresa Brasileira de Pesquisa Agropecuária Ministério da Agricultura, Pecuária e Abastecimento) (2001b) Mapa Exploratório-Reconhecimento de solos do município de Itacuruba, PE. http://www.uep.cnps.embrapa.br/solos/pe/itacuruba.pdf. Accessed October 2013
  22. FAO (Food and Agriculture Organization of the United Nations) (2001) Lecture notes on the major soils of the world. Driessen P, Deckers J, Spaargaren O, Nachtergaele F (eds) http://www.fao.org/3/a-y1899e.pdf. Accessed Sept 2016
  23. Fleming GM, Wunderle Jr JM, Ewert DN (2016) Diet preferences of goats in a subtropical dry forest and implications for habitat management. Trop Ecol 57:279–297Google Scholar
  24. Freitas ADS, Sampaio EVSB, Silva BLR, Almeida-Cortez JS, Menezes RSC (2012) How much nitrogen is fixed by biological symbiosis in tropical dry forests? 2. Herbs. Nutr Cycl Agroecosyst 94:181–192.  https://doi.org/10.1007/s10705-012-9545-6 CrossRefGoogle Scholar
  25. González-Pech PG, Jesús Torres-Acosta JF, Sandoval-Castro CA, Tun-Garrido J (2015) Feeding behavior of sheep and goats in a deciduous tropical forest during the dry season: the same menu consumed differently. Small Rumin Res 133:128–134.  https://doi.org/10.1016/j.smallrumres.2015.08.020 CrossRefGoogle Scholar
  26. Google Earth, version 7.1.2.2041 (2013) http://www.google.com/earth/index.html. Accessed Oct 2013
  27. Hagel H, Hoffmann C, Doluschitz R (2014) Mathematical programming models to increase land and water use efficiency in semi-arid NE-Brazil. Int J Food Syst Dyn 5:173–181.  https://doi.org/10.18461/ijfsd.v5i4.542 CrossRefGoogle Scholar
  28. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chang 109:117–161.  https://doi.org/10.1007/s10584-011-0153-2 CrossRefGoogle Scholar
  29. Ibáñez J, Martínez J, Schnabel S (2007) Desertification due to overgrazing in a dynamic commercial livestock–grass–soil system. Ecol Model 205:277–288.  https://doi.org/10.1016/j.ecolmodel.2007.02.024 CrossRefGoogle Scholar
  30. Junior FTA, Ferreira RLC, Marangon LC, Silva JAA, Gutiérrez-Céspedes HG (2013) Structure evaluation of the Caatinga vegetation for sustainable forest management in the municipality of Floresta, Pernambuco, Brazil. In: Gunkel G, Silva JAA, Sobral MC (eds) Sustainable management of water and land in semiarid areas. Editora Universitária UFPE, Recife, pp 186–202Google Scholar
  31. Kauffman JB, Sanford RL, Cummings DL, Salcedo IH, Sampaio EVSB (1993) Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74:140–151.  https://doi.org/10.2307/1939509 CrossRefGoogle Scholar
  32. Kengen S, Pareyn F, Barcellos NDE, Campello FCB (2000) Forest management in a semi-arid region in Brazil: a case study of the state of Rio Grande do Norte. In: Dore MHI, Guevara R (eds) Sustainable forest management and global climate change: selected case studies from the Americas. Edward Elgar Pub, Cheltenham, pp 261–269Google Scholar
  33. Köhl M, Lasco R, Cifuentes M, Jonsson Ö, Korhonen KT, Mundhenk P, Navar JJ, Stinson G (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. For Ecol Manag 352:21–34.  https://doi.org/10.1016/j.foreco.2015.05.036 CrossRefGoogle Scholar
  34. Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. In: Apps MJ, Price D, Wisniewski J (eds) Boreal forests and global change. Springer, Netherlands, pp 227–238.  https://doi.org/10.1007/978-94-017-0942-2_24 CrossRefGoogle Scholar
  35. Kyriazopoulos AP, Sklavou P, Nastis AS, Papanastasis VP (2009) Interactions between grazing behaviour and plant community structure in shrubland and their consequences on desertification. In: Papachristou TG, Parissi ZM, Ben Salem H, Morand-Fehr P (eds) Nutritional and foraging ecology of sheep and goats, Zaragoza : CIHEAM / FAO / NAGREF (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 85), pp 91–97Google Scholar
  36. Leal IR, da Silva JMC, Tabarelli M, Lacher TE (2005) Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv Biol 19:701–706.  https://doi.org/10.1111/j.1523-1739.2005.00703.x CrossRefGoogle Scholar
  37. Liniger HP, Mekdaschi Studer R, Moll P, Zander U (2017) Making sense of research for sustainable land management. Centre for Development and Environment (CDE), University of Bern, Switzerland and Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, GermanyGoogle Scholar
  38. Lucena RF, Albuquerque UP, Monteiro JM, Almeida CFCBR, Florentino AT, Ferraz JSF (2007) Useful plants of the semi-arid northeastern region of Brazil—a look at their conservation and sustainable use. Environ Monit Assess 125:281–290.  https://doi.org/10.1007/s10661-006-9521-1 CrossRefGoogle Scholar
  39. Manzano MG, Návar J (2000) Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral) in north-eastern Mexico. J Arid Environ 44:1–17.  https://doi.org/10.1006/jare.1999.0577 CrossRefGoogle Scholar
  40. Marengo JA, Chou SC, Torres RR, Giarolla A, Alves LM, Lyra A (2014) Climate change in Central and South America: recent trends, future projections, and impacts on regional agriculture. CCAFS Working Paper no. 73. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org
  41. Marinho FP, Mazzochini GG, Manhães AP, Weisser WW, Ganade G (2016) Effects of past and present land use on vegetation cover and regeneration in a tropical dryland forest. J Arid Environ 132:26–33.  https://doi.org/10.1016/j.jaridenv.2016.04.006 CrossRefGoogle Scholar
  42. Menezes RSC, Sampaio EVSB, Giongo V, Pérez-Marin AM (2012) Biogeochemical cycling in terrestrial ecosystems of the Caatinga biome. Braz J Biol 72:643–653.  https://doi.org/10.1590/S1519-69842012000400004 CrossRefGoogle Scholar
  43. MMA (Ministério do Meio Ambiente) (2010) Monitoramento do desmatamento nos biomas brasileiros por satélite – Monitoramento do bioma Caatinga entre 2002 e 2008. Ministério do Meio Ambiente (MMA) & Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). http://www.mma.gov.br/estruturas/sbf_chm_rbbio/_arquivos/relatrio_tcnico_caatinga_72.pdf. Accessed 21.09.2016
  44. MMA (Ministério do Meio Ambiente) (2011) Subsídios para a elaboração do plano de ação para a prevenção e controle do desmatamento na Caatinga. Ministério do Meio Ambiente, Brasília. http://www.mma.gov.br/estruturas/203/_arquivos/diagnostico_do_desmatamento_na_caatinga_203_2_203_1.pdf. Accessed 10.09.2015
  45. Navar J, Rodriguez-Flores F, Dominguez-Calleros PA, Perez-Verdin G (2014) Diversity-productivity relationship in the northeastern Tamaulipan thornscrub forest of Mexico. Intern J Ecol.  https://doi.org/10.1155/2014/196073
  46. Nosetto MD, Jobbágy EG, Paruelo JM (2006) Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J Arid Environ 67:142–156.  https://doi.org/10.1016/j.jaridenv.2005.12.008 CrossRefGoogle Scholar
  47. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993.  https://doi.org/10.1126/science.1201609 CrossRefGoogle Scholar
  48. Peichl M, Arain MA (2006) Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140:51–63.  https://doi.org/10.1016/j.agrformet.2006.08.004 CrossRefGoogle Scholar
  49. Pfister JA, Malechek JC (1986) Dietary selection by goats and sheep in a deciduous woodland of northeastern Brazil. J Range Manag 39:24–28.  https://doi.org/10.2307/3899680 CrossRefGoogle Scholar
  50. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, LeQuéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 185–237Google Scholar
  51. R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project. org. Accessed January 2016
  52. Revermann R, Wallenfang J, Oldeland J, Finckh M (2016) Species richness and evenness respond to diverging land-use patterns–a cross-border study of dry tropical woodlands in southern Africa. Afr J Ecol 55:152–161.  https://doi.org/10.1111/aje.12333 CrossRefGoogle Scholar
  53. Rodal MJN, Martins FR, Sampaio EVSB (2008) Levantamento quantitativo das plantas lenhosas em trechos de vegetação de caatinga em Pernambuco. Revista Caatinga 21:192–205Google Scholar
  54. Romano PA, Garcia EAC (1999) Policies for water-resources planning and management of the São Francisco River. In: Biswas AK, Cordeiro NV, Braga BPF, Tortajada C (eds) Management of Latin American River Basins: Amazon, Plata, and São Francisco. United Nations University Press, Tokyo, pp 245–272Google Scholar
  55. Salcedo IH, Menezes RSC (2009) Agroecosystem functioning and management in semi-arid Northeastern Brazil. In: Tiessen H, Stewart JWB (eds) Applying ecological knowledge to landuse decisions. Inter-American Institute for Global Change Research - IICA-IAI-Scope, Paris, pp 73–81Google Scholar
  56. Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 35–63CrossRefGoogle Scholar
  57. Sampaio EVSB (2010) Características e potencialidades. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama P (eds) Uso sustentável e conservação dos recursos florestais da caatinga. Ministério do Meio Ambiente, Brasília, pp 29–48Google Scholar
  58. Sampaio EVSB, Costa TL (2011) Estoques e fluxos de carbono no semi-árido nordestino: estimativas preliminares. Revista Brasileira de Geografia Física 6:1275–1291Google Scholar
  59. Sampaio EVSB, Silva GC (2005) Biomass equations for Brazilian semiarid caatinga plants. Acta Bot Bras 19:935–943.  https://doi.org/10.1590/S0102-33062005000400028 CrossRefGoogle Scholar
  60. Sampaio EVSB, Gasson P, Baracat A, Cutler D, Pareyn F, Lima KC (2010) Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. For Ecol Manag 259:1135–1140.  https://doi.org/10.1016/j.foreco.2009.12.028 CrossRefGoogle Scholar
  61. Santana JAS, Souto JS (2006) Diversidade e estrutura fitossociológica da Caatinga na Estação Ecológica do Seridó-RN. Revista de Biologia e Ciências da Terra 6:232–242Google Scholar
  62. Scheffer F, Schachtschabel P (eds) (2010) Lehrbuch der Bodenkunde, 16th edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  63. Schneider S, Siegmund-Schultze M, Holanda Júnior EV, Alves FSF, Valle Zárate A (2012) Is a geographical certification a promising production and commercialization strategy for smallholder sheep farming in Ceará, Brazil? J Agric Food Syst Community Dev 2:107–127.  https://doi.org/10.5304/jafscd.2012.022.013 CrossRefGoogle Scholar
  64. Schulz K, Voigt K, Beusch C, Almeida-Cortez JS, Kowarik I, Walz A, Cierjacks A (2016) Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. For Ecol Manag 367:62–70.  https://doi.org/10.1016/j.foreco.2016.02.011 CrossRefGoogle Scholar
  65. Schulz C, Koch R, Cierjacks A, Kleinschmit B (2017) Land change and loss of landscape diversity at the Caatinga phytogeographical domain—analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ 136:54–74.  https://doi.org/10.1016/j.jaridenv.2016.10.004 CrossRefGoogle Scholar
  66. Sousa SCD, Oliveira VPVD, Silva JMFD, Melo RAD, Azevedo R (2013) The use of lands from small watershed of riacho Itacuruba-PE. In: Gunkel G, Silva JAA, Sobral MC (eds) Sustainable management of water and land in semiarid areas. Editora Universitária UFPE, Recife, pp 129–143Google Scholar
  67. Souza Lima MCJ, Soto-Blanco B (2010) Poisoning in goats by Aspidosperma pyrifolium Mart.: biological and cytotoxic effects. Toxicon 55:320–324.  https://doi.org/10.1016/j.toxicon.2009.08.004 CrossRefGoogle Scholar
  68. Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143:63–72.  https://doi.org/10.1016/j.geoderma.2007.09.004 CrossRefGoogle Scholar
  69. Tavares FM, Schulz K, Pereira RCA, Cierjacks A, Almeida-Cortez JS (2016) Floristic survey of the Caatinga in areas with different grazing intensities, Pernambuco, northeast Brazil. J Environ Anal Prog 01:43–51CrossRefGoogle Scholar
  70. Tiessen H, Feller C, Sampaio EVSB, Garin P (1998) Carbon sequestration and turnover in semiarid savannas and dry forest. Clim Chang 40:105–117.  https://doi.org/10.1023/A:1005342932178 CrossRefGoogle Scholar
  71. Torres FSDM, Santos Pfaltzgraff PAD (2014) Geodiversidade do estado de Pernambuco, Programa Geologia do Brasil. Levantamento da Geodiversidade. CPRM, Recife. http://www.cprm.gov.br/publique/media/Geodiversidade_PE.pdf. Accessed 15.01.2016
  72. Winter TC (2001) The concept of hydrologic landscapes. JAWRA J Am Water Resour Assoc 37:335–349.  https://doi.org/10.1111/j.1752-1688.2001.tb00973.x CrossRefGoogle Scholar
  73. Zuur AF, Ieno EN, Walke, N.J, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer-Verlag, 1st edition, New YorkGoogle Scholar
  74. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.  https://doi.org/10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katharina Schulz
    • 1
  • Maike Guschal
    • 1
    • 2
  • Ingo Kowarik
    • 1
    • 3
  • Jarcilene S. Almeida-Cortez
    • 4
  • Everardo V. S. B. Sampaio
    • 5
  • Arne Cierjacks
    • 1
    • 3
  1. 1.Department of Ecology, Ecosystem Science/Plant EcologyTechnische Universität BerlinBerlinGermany
  2. 2.Museum of Zoology, Senckenberg Natural History Collection DresdenDresdenGermany
  3. 3.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  4. 4.Departamento de Botânica, Centro de BiociênciasUniversidade Federal de PernambucoRecifeBrazil
  5. 5.Departamento de Energia Nuclear, Centro de Tecnologia e GeociênciasUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations