Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria

Abstract

Vegetation change and soil erosion are among the most serious environmental issues associated with the current the war in Syria. About 13 million people have been displaced, of which 8 million are inside Syria. The Syrian coastal region has received 1.4 million people of refugees since the onset of the war in Syria, resulting in an increased demand of services and goods from ecosystems, thus increasing the overall pressure from human activities on natural resources, especially vegetation and soil. The Syrian coastal region constitutes an important economic, touristic, and agricultural center in Syria. More than 90% of the vegetation of Syria is concentrated in the western coastal region. The study aims to assess the changes of vegetation cover and soil erosion in Safita area during the period 2011–2017 using satellite observations (NDVI) and a soil loss model (RUSLE). The results indicate a massive variation of vegetation cover, where degradation has occurred mainly in areas with high and very high densities of vegetation cover. As a result, soil erosion rates and their risk grades have increased remarkably. The estimated soil erosion amounted to 20.14 and 23.19 t ha−1 year−1 in 2011 and 2017, respectively. However, the results of this study make it a must for local planners to intervene quickly by using reliable and effective conservation techniques. A comprehensive analysis revealed that this unexpected pressure created by refugees can also significantly and swiftly alter the environmental characteristics of the area with potential serious consequences. So, impact of war in Syria on natural resources in the safe areas is a complex process which requires further detailed studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdo H, Salloum J (2017a) Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environ Earth Sci 76(3):114. https://doi.org/10.1007/s12665-017-6424-0

    Article  Google Scholar 

  2. Abdo H, Salloum J (2017b) Spatial assessment of soil erosion in Alqerdaha basin (Syria). Model Earth Syst Environ 3(1):26. https://doi.org/10.1007/s40808-017-0294-z

    Article  Google Scholar 

  3. Abdo HG (2017) Geo-modeling approach to predicting of erosion risks utilizing RS and GIS data: a case study of Al-Hussain Basin, Tartous, Syria. J Environ Geol 1(1):1–4

    Google Scholar 

  4. Ahmed N (2016) Application of NDVI in vegetation monitoring using GIS and remote sensing in northern Ethiopian highlands. Abyss J Sci Technol 1(1):12–17

    Google Scholar 

  5. Aster GDEM, Validation Team (2009) ASTER global DEM validation summary report. METI/ERSDAC, NASA/LPDAAC, USGS/EROS

    Google Scholar 

  6. Balasubramani K, Veena M, Kumaraswamy K, Saravanabavan V (2015) Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (rusle) model through GIS. Model Earth Syst Environ 1:10. https://doi.org/10.1007/s40808-015-0015-4

    Article  Google Scholar 

  7. Baldacchino G, Sammut C (2016) The migration crisis: No human is illegal. The Round Table 105(2):231–233. https://doi.org/10.1080/00358533.2015.1112092

    Article  Google Scholar 

  8. Barakat M, Mahfoud I, Kwyes A (2014a) Estimation of vegetation factor (C) using normalized difference vegetation index (NDVI) in lower and middle basin of Al-Kabeer Alshamali River in Lattakia/Syria. Tishreen Univ J Res Sci Stud 36(5):99–107

    Google Scholar 

  9. Barakat M, Mahfoud I, Kwyes A (2014b) Study of soil erosion risk in the basin of Northern Al-Kabeer river at Lattakia-Syria using remote sensing and GIS techniques. Mesopot J Mar Sci 29(1):29–44

  10. Barati S, Rayegani B, Saati M, Sharifi A, Nasri M (2011) Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. Egypt J Remote Sens Space Sci 14(1):49–56. https://doi.org/10.1016/j.ejrs.2011.06.001

    Article  Google Scholar 

  11. Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 79(1):49–59. https://doi.org/10.1016/j.catena.2009.05.010

    Article  Google Scholar 

  12. Biswas AK (2002) Scientific assessment of the long-term environmental consequences of war. In: Austin JE, Bruch CE (eds) The environmental consequences of war: Legal, economic, and scientific perspectives. Cambridge University Press. https://doi.org/10.1080/07900627.2015.1023892

  13. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

    Article  Google Scholar 

  14. Casana J, Panahipour M (2014) Satellite-based monitoring of looting and damage to archaeological sites in Syria. J Eastern Mediterr Archaeol Heritage Stud 2(2):128–151. https://doi.org/10.5325/jeasmedarcherstu.2.2.0128

    Article  Google Scholar 

  15. Chadli K (2016) Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Model Earth Syst Environ 2:1–10

    Google Scholar 

  16. Chen PY, Fedosejevs G, Tiscareno-Lopez M, Arnold JG (2006) Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico. Environ Monit Assess 119:69–82. https://doi.org/10.1007/s10661-005-9006-7

    Article  Google Scholar 

  17. Demirci A, Karaburun A (2012) Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ Earth Sci 66(3):903–913

    Article  Google Scholar 

  18. Diodato N, Bellocchi G (2008) Modelling vegetation greenness responses to climate variability in a Mediterranean terrestrial ecosystem. Environ Monit Assess 143:147–159. https://doi.org/10.1007/s10661-007-9964-z

    Article  Google Scholar 

  19. Doocy S, Lyles E, Delbiso TD, Robinson CW (2015) Internal displacement and the Syrian crisis: an analysis of trends from 2011–2014. Confl Heal 9(1):33. https://doi.org/10.1186/s13031-015-0060-7

    Article  Google Scholar 

  20. DOSA (2017) Official records of the Directorate of Social Affairs in Tartous. Ministry of social affairs, Syria

    Google Scholar 

  21. Elaloui A, Marrakchi C, Fekri A, Maimouni S, Aradi M (2017) USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Model Earth Syst Environ 1–13

  22. Elwell HA, Stocking MA (1976) Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 15(1):61–70. https://doi.org/10.1016/0016-7061(76)90071-9

    Article  Google Scholar 

  23. Fagbohun BJ, Anifowose AY, Odeyemi C, Aladejana OO, Aladeboyeje AI (2016) GIS-based estimation of soil erosion rates and identification of critical areas in Anambra sub-basin, Nigeria. Model Earth Syst Environ 2(3):159. https://doi.org/10.1007/s40808-016-0218-3

    Article  Google Scholar 

  24. Faour G, Fayad A (2014) Water environment in the coastal basins of Syria—assessing the impacts of the war. Environl Processes 1(4):533–552. https://doi.org/10.1007/s40710-014-0043-5

    Article  Google Scholar 

  25. Farhan Y, Zregat D, Farhan I (2013) Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: a case study of Kufranja Watershed, Northern Jordan. J Water Resour Prot 5(12):1247. https://doi.org/10.4236/jwarp.2013.512134

    Article  Google Scholar 

  26. Farhan Y, Nawaiseh S (2015) Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci 74(6):4649–4669. https://doi.org/10.1007/s12665-015-4430-7

    Article  Google Scholar 

  27. Ferreira V, Panagopoulos T (2014) Seasonality of soil erosion under Mediterranean conditions at the Alqueva Dam watershed. Enviro Manag 54:67–83. https://doi.org/10.1007/s00267-014-0281-3

    Article  Google Scholar 

  28. Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geosci Front 7(6):953–961

    Article  Google Scholar 

  29. Gleick P (2014) Water, drought, climate change, and conflict in Syria. Am Meteorol Soc 6:331–340. https://doi.org/10.1175/WCAS-D-13-00059.1

    Article  Google Scholar 

  30. Hu CJ, Fu BJ, Liu GH, Jin TT, Guo L (2010) Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau, China. J Soils Sediments 10:1082–1091. https://doi.org/10.1007/s11368-010-0209-3

    Article  CAS  Google Scholar 

  31. Hu Y, Tian G, Mayer AL, He R (2015) Risk assessment of soil erosion by application of remote sensing and GIS in Yanshan Reservoir catchment, China. Nat Hazards 79(1):277–289. https://doi.org/10.1007/s11069-015-1841-4

    Article  Google Scholar 

  32. İrvem A, Topaloğlu F, Uygur V (2007) Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336(1–2):30–37

    Article  Google Scholar 

  33. Jaafar HH, Zurayk R, King C, Ahmad F, Al-Outa R (2015) Impact of the Syrian conflict on irrigated agriculture in the Orontes Basin. Int J Water Resour Dev 31(3):436–449. https://doi.org/10.1080/07900627.2015.1023892

    Article  Google Scholar 

  34. Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845. https://doi.org/10.1016/j.rse.2008.06.006

    Article  Google Scholar 

  35. Kim HS (2006) Soil erosion modelling using RUSLE and GIS on the IMHA watershed, South Korea. Doctoral dissertation. Colorado State University USA

  36. Kouli M, Soupios P, Vallianatos F (2009) Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ Geol 57(3):483–497. https://doi.org/10.1007/s00254-008-1318-9

    Article  Google Scholar 

  37. Lahav G (2016) The global challenge of the refugee exodus. Curr Hist 115(777):10

    Google Scholar 

  38. Lan Y (2009) Development of an integration sensor and instrumentation system for measuring crop conditions. CIGR Journal, Agricultural Engineering International

    Google Scholar 

  39. Liu LY, Jing X, Wang JH, Zhao CJ (2009) Analysis of the changes of vegetation coverage of western Beijing mountainous areas using remote sensing and GIS. Environ Monit Assess 153:339–349. https://doi.org/10.1007/s10661-008-0360-0

    Article  Google Scholar 

  40. Ma M, Wang J, Wang X (2006) Advance in the inter-annual variability of vegetation and its relation to climate based on remote sensing. J Remote Sens 10(3):421–431

    Google Scholar 

  41. Machlis G, Hanson T (2008) Warfare ecology. Bioscience:729–736. https://doi.org/10.1007/978-94-007-1214-0_5

  42. Marx A (2016) Detecting urban destruction in Syria: a Landsat-based approach. Remote Sens Appl: Soc Environ 4:30–36. https://doi.org/10.1016/j.rsase.2016.04.005

    Article  Google Scholar 

  43. Mitri G, Nader M, Van der Molen I, Lovett J (2014) Evaluating exposure to land degradation in association with repetitive armed conflicts in North Lebanon using multi-temporal satellite data. Environ Monit Assess 186(11):7655–7672. https://doi.org/10.1007/s10661-014-3957-5

    Article  Google Scholar 

  44. Mohammed S, Kbibo I, Alshihabi O, Mahfoud E (2016) Studying rainfall changes and water erosion of soil by using the WEPP model in Lattakia, Syria. J Agric Sci 61(4):375–386. https://doi.org/10.2298/JAS1604375M

    Article  Google Scholar 

  45. Morrissey J (2014) Environmental change and human migration in sub-Saharan Africa. In People on the move in a changing climate (pp. 81-109). Springer Netherlands. https://doi.org/10.1007/978-94-007-6985-4_4

  46. Mubareka S, Ehrlich D (2010) Identifying and modelling environmental indicators for assessing population vulnerability to conflict using ground and satellite data. Ecol Indic 10(2):493–503. https://doi.org/10.1016/j.ecolind.2009.09.002

    Article  Google Scholar 

  47. Müller MF, Yoon J, Gorelick SM, Avisse N, Tilmant A (2016) Impact of the Syrian refugee crisis on land use and transboundary freshwater resources. Proc Natl Acad Sci 113(52):14932–14937. https://doi.org/10.1073/pnas.1604566113

    Article  CAS  Google Scholar 

  48. Nearing MA, Deer-Ascough L, Laflen JM (1990) Sensitivity analysis of the WEPP hillslope profile erosion model. Trans ASAE 33(3):839–849. https://doi.org/10.13031/2013.31409

    Article  Google Scholar 

  49. Ozsoy G, Aksoy E (2015) Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization. Environ Monit Assess 187(7):419. https://doi.org/10.1007/s10661-015-4653-9

    Article  Google Scholar 

  50. Pal S (2016) Identification of soil erosion vulnerable areas in Chandrabhaga river basin: a multi-criteria decision approach. Model Earth Syst Environ 2(1):5. https://doi.org/10.1007/s40808-015-0052-z

    Article  Google Scholar 

  51. Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479:189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010

    Article  CAS  Google Scholar 

  52. Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K et al (2015) The new assessment of soil loss by water erosion in Europe. Environ Sci Pol 54:438–447. https://doi.org/10.1016/j.envsci.2015.12.013

    Article  Google Scholar 

  53. Panagos P, Borrelli P, Meusburger K, Yu B, Klik A, Lim KJ et al (2017) Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci Rep 7(1):4175. https://doi.org/10.1038/s41598-017-04282-8

    Article  CAS  Google Scholar 

  54. Propastin PA, Kappas M, Muratova NR (2008) A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Manag Environ Qual 19(5):579–596. https://doi.org/10.1108/14777830810894256

    Article  Google Scholar 

  55. Rastmanesh F, Moore F, Kharrati-Kopaei M, Behrouz M (2010) Monitoring deterioration of vegetation cover in the vicinity of smelting industry, using statistical methods and TM and ETM+ imageries, Sarcheshmeh copper complex, Central Iran. Environ Monit Assess 163:397–410. https://doi.org/10.1007/s10661-009-0843-7

    Article  CAS  Google Scholar 

  56. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture Handbook No 703 p 404

  57. Reuveny R, Mihalache-O’Keef A, Li Q (2010) The effect of warfare on the environment. J Peace Res 47(6):749–761

    Article  Google Scholar 

  58. Rojo L (1990) Plan Nacional de Restauracio’n Hidrolo’gico-Forestal y Control de la Erosio’n, Tomo I. Memoria; Tomo II. Mapas. ICONA, Madrid

  59. Roose E, Kabore V, Guenat C (1993) Le zaï: fonctionnement, limites et amélioration d’une pratique traditionnelle africaine de rehabilitation de la végétation et de la productivité des terres degrades en région soudano-sahélienne (Burkina Faso). Cahiers-ORSTOM Pédol 28(2):159–173

    Google Scholar 

  60. Saleh HA, Allaert G, Sutter RD (2016) Towards efficient use of water resources management: a case study of the Syrian coastal region. Int J Water 10(1):28–54. https://doi.org/10.1504/IJW.2016.073740

    Article  Google Scholar 

  61. Salloum J, Abdo H (2016) Statistical modeling of conservation the vegetation of the land in Alqadmous area from rainfall erosion. Tishreen Univ J Res Sci Stud-Arts Human Ser 38(3):667–683

    Google Scholar 

  62. Samanta S, Koloa C, Pal DK, Palsamanta B (2016) Estimation of potential soil erosion rate using RUSLE and E30 model. Model Earth Syst Environ 2(3):149. https://doi.org/10.1007/s40808-016-0206-7

    Article  Google Scholar 

  63. Swift J (1973) Disaster and a Sahelian nomad economy. In: Dalby D, Church R (eds) Drought in Africa: Report of the 1973 symposium. University of London, London

    Google Scholar 

  64. Trabucchi M, Puente C, Comin FA, Olague G, Smith SV (2012) Mapping erosion risk at the basin scale in a Mediterranean environment with opencast coal mines to target restoration actions. Reg Environ Chang 12(4):675–687

    Article  Google Scholar 

  65. United Nations Office for the Coordination of Humanitarian Affairs (2017) About the Crisis, OCHA. 〈http://www.unocha.org/syrian-arab-republic/syria-country-profile/about-crisis〉, (accessed 29. 1.17).

  66. Wei W, Chen LD, Fu BJ, Lv YH, Gong J (2009) Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrol Process 23:1780–1791. https://doi.org/10.1002/hyp.7294

    Article  Google Scholar 

  67. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses, a guide to conservation planning. USDA Handb. 537. U.S. Gov. Print. Off., Washington, DC

  68. Wischmeier WH, Johnson CB, Cross BV (1971) A soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–192

    Google Scholar 

  69. Wu X, Wang X (2011) Spatial influence of geographical factors on soil erosion in Fuyang County, China. Procedia Environ Sci 10:2128–2133

    Article  Google Scholar 

  70. Yang Y, Zhu J, Zhao C, Liu S, Tong X (2011) The spatial continuity study of NDVI based on kriging and BPNN algorithm. Math Comput Model 54(3):1138–1144. https://doi.org/10.1016/j.mcm.2010.11.046

    Article  Google Scholar 

  71. Zeleke G, Hurni H (2001) Implications of land use and land cover dynamics for mountain resource degradation in the northwestern Ethiopian Highlands. Mt Res Dev 21(2):184–191. https://doi.org./10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2

  72. Zeng B, Yang TB (2008) Impacts of climate warming on vegetation in Qaidam area from 1990 to 2003. Environ Monit Assess 144:403–417. https://doi.org/10.1007/s10661-007-0003-x

    Article  Google Scholar 

  73. Zhou ZC, Shangguan ZP, Zhao D (2006) Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecol Model 198(1):263–268. https://doi.org/10.1016/j.ecolmodel.2006.04.019

    Article  Google Scholar 

  74. Zhou P, Luukkanen O, Tokola T, Nieminen J (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75(3):319–325. https://doi.org/10.1016/j.catena.2008.07.010

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully thanks rector of Tartous University Prof. Dr. Issam Al-dali for unlimited support. Sincerely thanks also go to Prof. Dr. Fatina Yaseen Alshaal and Prof. Dr. Juliet Salloum for academic support, and Ms. Homam Knaj and Mrs. Rania Hassan for administrative support. The author expresses his deep and sincere thanks to the anonymous reviewer and the editor for their valuable comments, suggestions, assistance, and constructive criticism in the improvement of earlier version of the manuscript, and Ms. Wafeeq Asaad for editing the English of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hazem Ghassan Abdo.

Additional information

Editor:Wolfgang Cramer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdo, H.G. Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria. Reg Environ Change 18, 1707–1719 (2018). https://doi.org/10.1007/s10113-018-1280-3

Download citation

Keywords

  • Syrian coastal region
  • Vegetation dynamics
  • Soil erosion risk
  • NDVI
  • RUSLE model