Regional Environmental Change

, Volume 18, Issue 5, pp 1427–1437 | Cite as

Trees on the move: using decision theory to compensate for climate change at the regional scale in forest social-ecological systems

  • Marta Benito-GarzónEmail author
  • Bruno Fady
  • Hendrik Davi
  • Natalia Vizcaíno-Palomar
  • Juan Fernández-Manjarrés
Original Article


The adaptation of social-ecological systems such as managed forests depends largely on decisions taken by forest managers who must choose among a wide range of possible futures to spread risks. We used robust decision theory to guide management decisions on the translocation of tree populations to compensate for climate change. We calibrated machine learning correlational models using tree height data collected from five common garden tests in France where Abies alba provenances from 11 European countries are planted. Resulting models were used to simulate tree height in the planting sites under current and 2050 climates (regional concentration pathway scenarios (RCPs) 2.6, 4.5, 6.0 and 8.5). Our results suggest an overall increase in tree height by 2050, but with large variation among the predictions depending on the provenance and the RCPs. We applied maximin, maximax and minimax decision rules to address outcomes under five uncertain states of the world represented by the four RCPs and the present climate (baseline). The maximin rule indicated that for 2050, the best translocation option for maximising tree height would be the use of provenances from Northwest France into all target zones. The maximax and minimax regret rules pointed out the same result for all target zones except for the ‘Les Chauvets’ trial, where the East provenance was selected. Our results show that decision theory can help management by reducing the number of options if most decision rules converge. Interestingly, the commonly suggested recommendation of using multiple provenances to mitigate long-term maladaptation risks or from ‘pre-adapted’ populations from the south was not supported by our approach.


Assisted migration Decision theory Forests Phenotypic variation Social-ecological systems Uncertainty 



We are indebted to Denis Vauthier and Franck Rei, INRA UEFM Avignon, and Fabrice Bonne and Thierry Paul, INRA UEFL Nancy, for data collection in provenance tests.

Funding information

This study was funded by the French National Science Agency (AMTools project: “Ecological and Legal Tools for the Assisted Migration of Forests in France”), by the Réseau Mixte Tecnologique AFORCE Project “Quelles ressources génétiques au sein du genre Abies pour faire face aux changements climatiques?” and by the “Investments for the future” Programme IdEx Bordeaux, reference ANR-10-IDEX-03-02.

Supplementary material

10113_2018_1277_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18.1 kb)
10113_2018_1277_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 13.5 kb)
10113_2018_1277_MOESM3_ESM.docx (15 kb)
ESM 3 (DOCX 14.9 kb)
10113_2018_1277_MOESM4_ESM.docx (14 kb)
ESM 4 (DOCX 14.2 kb)
10113_2018_1277_MOESM5_ESM.xlsx (263 kb)
ESM 5 (XLSX 262 kb)


  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111.
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. CrossRefGoogle Scholar
  3. Benito Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20(5):766–778. CrossRefGoogle Scholar
  4. Benito-Garzón M, Fernandez-Manjarrés JF (2015) Testing scenarios for assisted migration of forest trees in Europe. New For 46(5–6):979–994. CrossRefGoogle Scholar
  5. Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernandez-Manjarrés J (2013a) Habitat restoration and climate change: dealing with climate variability, incomplete data and management decisions with tree translocations. Restor Ecol 21(5):530–536. CrossRefGoogle Scholar
  6. Benito-Garzón M, Ha-Duong M, Frascaria-Lacoste N, Fernandez-Manjarrés JF (2013b) Extreme climate variability should be considered in forestry-assisted migration. Bioscience 63(5):17. CrossRefGoogle Scholar
  7. Benito-Garzón M, Ruiz-Benito P, Zavala MA (2013c) Inter-specific differences in tree growth and mortality responses to environmental drivers determine potential species distribution limits in Iberian forests. Glob Ecol Biogeogr 22(10):1141–1151. CrossRefGoogle Scholar
  8. Benito-Garzón M, Leadley PW, Fernandez-Manjarrés JF (2014) Assessing global biome exposure to climate change through the Holocene-Anthropocene transition. Glob Ecol Biogeogr 23(2):235–244. CrossRefGoogle Scholar
  9. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. CrossRefGoogle Scholar
  10. Bucharova A, Durka W, Hermann J-M, Hölzel N, Michalski S, Kollmann J, Bossdorf O (2016) Plants adapted to warmer climate do not outperform regional plants during a natural heat wave. Ecol Evol 6(12):4160–4165. CrossRefGoogle Scholar
  11. Büntgen U, Tegel W, Kaplan JO, Schaub M, Hagedorn F, Bürgi M, Brázdil R, Helle G, Carrer M, Heussner K-U, Hofmann J, Kontic R, Kyncl T, Kyncl J, Camarero JJ, Tinner W, Esper J, Liebhold A (2014) Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front Ecol Environ 12(2):100–106. CrossRefGoogle Scholar
  12. Cailleret M, Nourtier M, Amm A, Durand-Gillmann M, Davi H (2014) Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann For Sci 71(6):643–657. CrossRefGoogle Scholar
  13. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci U S A 108(4):1474–1478. CrossRefGoogle Scholar
  14. Durand-Gillmann M, Cailleret M, Boivin T, Nageleisen L-M, Davi H (2014) Individual vulnerability factors of Silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Ann For Sci 71(6):659–673. CrossRefGoogle Scholar
  15. Fady B, Aravanopoulos FA, Alizoti P, Mátyás C, von Wühlisch G, Westergren M, Belletti P, Cvjetkovic B, Ducci F, Huber G, Kelleher CT, Khaldi A, Kharrat MBD, Kraigher H, Kramer K, Mühlethaler U, Peric S, Perry A, Rousi M, Sbay H, Stojnic S, Tijardovic M, Tsvetkov I, Varela MC, Vendramin GG, Zlatanov T (2016a) Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. For Ecol Manag 375:66–75. CrossRefGoogle Scholar
  16. Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016b) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16(4):927–939. CrossRefGoogle Scholar
  17. Fernández-Manjarrés JF, Tschanz L (2010) Assisted colonization: protect managed forests. Science 330(6009):1319. CrossRefGoogle Scholar
  18. Fitzgerald J, Lindner M (2013) Adapting to climate change in European forests—results of the MOTIVE project. Pensoft Publiushers, SofiaGoogle Scholar
  19. Havens K, Vitt P, Still S, Kramer AT, Fant JB, Schatz K (2015) Seed sourcing for restoration in an era of climate change. Nat Areas J 35(1):122–133. CrossRefGoogle Scholar
  20. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. CrossRefGoogle Scholar
  21. Hildebrandt P, Knoke T (2011) Investment decisions under uncertainty—a methodological review on forest science studies. For Policy Econ 13(1):1–15. CrossRefGoogle Scholar
  22. IPCC (2014) Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core writing team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.Google Scholar
  23. Isaac-Renton MG, Roberts DR, Hamann A, Spiecker H (2014) Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change. Glob Chang Biol 20(8):2607–2617. CrossRefGoogle Scholar
  24. Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam M-J, Lalagüe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71(7):723–739. CrossRefGoogle Scholar
  25. Leites LP, Rehfeldt GE, Robinson AP, Crookston NL, Jaquish B (2012) Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Nat Rersource Model 25(3):409–433. CrossRefGoogle Scholar
  26. Liaw A, Wiener M (2002) Classification and Regression by randomForest. url = News 2:18–22
  27. Liepelt S, Cheddadi R, de Beaulieu J-L, Fady B, Gömöry D, Hussenförfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—a synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol 153(1-2):139–149. CrossRefGoogle Scholar
  28. Linares JC, Camarero JJ (2011) Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur J For Res 131(4):1001–1012. CrossRefGoogle Scholar
  29. Martín-Alcón S, Coll L, Ameztegui A (2016) Diversifying sub-Mediterranean pinewoods with oak species in a context of assisted migration: responses to local climate and light environment. Appl Veg Sci 19:n/a–n/a.
  30. Mátyás C (1994) Modeling climate change effects with provenance test data. Tree Physiol 14:707–804CrossRefGoogle Scholar
  31. Montwé D, Isaac-Renton M, Hamann A, Spiecker H (2016) Drought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north. Glob Chang Biol 22(2):806–815. CrossRefGoogle Scholar
  32. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. CrossRefGoogle Scholar
  33. O’Neill GA, Stoehr M, Jaquish B (2014) Quantifying safe seed transfer distance and impacts of tree breeding on adaptation. For Ecol Manag 328:122–130. CrossRefGoogle Scholar
  34. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3(2):437–449. CrossRefGoogle Scholar
  35. Pedlar JH, McKenney DW, Aubin I, Beardmore T, Beaulieu J, Iverson L, O’Neill GA, Winder S, Ste-Marie C (2012) Placing forestry in the assisted migration debate. Bioscience 62(9):835–842. CrossRefGoogle Scholar
  36. Peterson M (2009) An introduction to decision theory. Cambridge University Press, Cambridge.
  37. Polasky S, Carpenter SR, Folke C, Keeler B (2011) Decision-making under great uncertainty: environmental management in an era of global change. Trends Ecol Evol 26(8):398–404. CrossRefGoogle Scholar
  38. Prasad AM, Iverson LR, Matthews SN, Peters MP (2016) A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system. Landsc Ecol 31(9):2187–2204. CrossRefGoogle Scholar
  39. Prato T (2005) Accounting for uncertainty in making species protection decisions. Conserv Biol 19:806–814Google Scholar
  40. Regan HM, Ben-Haim Y, Langford B, Wilson WG, Lundberg P, Andelman SJ, Burgman MA (2005) Robust decision-making under severe uncertainty for conservation management. Ecol Appl 15(4):1471–1477. CrossRefGoogle Scholar
  41. Rehfeldt GE, Jaquish B, Saenz-Romero C, Joyce DG, Leites LP, ST Clair JB, Lopez-Upton J (2014a) Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation. For Ecol Manag 324:147–157. CrossRefGoogle Scholar
  42. Rehfeldt GE, Leites LP, ST Clair JB, Jaquish B, Saenz-Romero C, Lopez-Upton J, Joyce DG (2014b) Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesee: clines in growth potential. For Ecol Manag 324:138–146. CrossRefGoogle Scholar
  43. Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F, Ullrich KK, Postolache D, Vendramin GG, Fady B (2016) Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Mol Ecol 25(3):776–794. CrossRefGoogle Scholar
  44. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38(1):595–619. CrossRefGoogle Scholar
  45. Sgrò CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4(2):326–337. CrossRefGoogle Scholar
  46. Valladares F, Matesanz S, Araujo MB, Balaguer L, Benito-Garzon M, Cornwell WK, Gianoli E, Guilhaumon F, van Kleunen M, Naya D, Nicotra AB, Poorter H, Zavala M (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17(11):1351–1364. CrossRefGoogle Scholar
  47. van Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Weyant J (2011) A special issue on the RCPs. Clim Chang 109(1–2):1–4. CrossRefGoogle Scholar
  48. Walker B, Holling CS, Carpenter SR, Kinzing A (2004) Resilience, adaptability and transformability in social-ecological systems. Ecol Soc 9:art5.
  49. Whittet R, Cavers S, Cottrell J, Ennos R (2016) Seed sourcing for woodland creation in an era of uncertainty: an analysis of the options for Great Britain. Forestry 1–11.
  50. Yousefpour R, Jacobsen JB, Thorsen BJ, Meilby H, Hanewinkel M, Oehler K (2012) A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann For Sci 69(1):1–15. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marta Benito-Garzón
    • 1
    Email author
  • Bruno Fady
    • 2
  • Hendrik Davi
    • 2
  • Natalia Vizcaíno-Palomar
    • 1
  • Juan Fernández-Manjarrés
    • 3
  1. 1.BIOGECO, INRAUniv. BordeauxPessacFrance
  2. 2.INRA, UR629, URFMEcologie des Forêts MéditerranéennesAvignonFrance
  3. 3.CNRS, Laboratoire Ecologie, Systématique et EvolutionUniversité Paris-SudOrsay CedexFrance

Personalised recommendations