Skip to main content

To produce or not to produce: an analysis of bioenergy and crop production decisions based on farmer typologies in Brandenburg, Germany


The future course of the political regulation of bioenergy will have a significant sustainability impact on many levels. Understanding the specific effects of different political governance strategies on the agricultural system is essential for developing a stable and economically, ecologically as well as socially sustainable market for bioenergy. This paper contributes to this objective by providing an analysis of different decision patterns of farmers in the production of energy crops. For this purpose, an empirical analysis was conducted among farmers in the federal state of Brandenburg in northern Germany. A cluster analysis of structural factors resulted in a typology of farmers that differ in their energy crop production decisions. Six cluster typologies are identified for each of which a cluster-specific conjoint analysis helped to identify decision preferences in order to understand how and to what degree structural farm characteristics as well as respective production “traditions” influence the willingness to produce crops for energy use.

This is a preview of subscription content, access via your institution.


  1. According to EUROSTAT data, in 2011, the EU imported over 1.9 million tons of biodiesel. Of these, 71% were imported from Argentina and 27% from Indonesia. For a more detailed overview, see also Ecofys (2011).

  2. Statistics Berlin-Brandenburg;, accessed September 19, 2014.

  3. In German: Arbeitsgruppe “lebendige Dörfer” in Brandenburg.

  4. Produkt + Markt is an established market research institute with global experience in agribusiness research. For more information, see also

  5. In the survey, the respondents were also asked whether they owned a plant oil press, a biodiesel production facility, or a biomass combined heat and power plant for the energetic use of biomass. However, none of these alternatives were of relevance, whereas biogas production facilities are common and proved to significantly impact the decision portfolio of farmers. For this purpose, in the following empirical analysis, only biogas production facilities will be further considered.

  6. The software used for the analysis is PASW Statistics 18, formerly known as SPSS.

  7. Slurry is a significant input for biogas production.


  • Acosta LA, Rounsevell MD, Bakker M, Van Doorn A, Gómez-Delgado M, Delgado M (2014) An agent-based assessment of land use and ecosystem changes in traditional agricultural landscape of Portugal. Intell Inf Manag 6(2):55–80.

    Google Scholar 

  • Al-Riffai P, Dimaranan B, Laborde D (2010) European Union and United States biofuel mandates: impacts on world markets. Inter-American Development Bank, Washington, D.C.

    Google Scholar 

  • Andrews RL, Currim IS (2003) Recovering and profiling the true segmentation structure in markets: an empirical investigation intern. J Res Market 20:177–192.

    Article  Google Scholar 

  • Basili M, Fontini F (2012) Biofuel from Jatropha curcas: environmental sustainability and option value. Ecol Econ 78:1–8.

    Article  Google Scholar 

  • Beneking A 2011. Genese und Wandel der deutschen Biokraftstoffpolitik. Eine akteurszentrierte Policy-Analyse der Förderung biogener Kraftstoffe in Deutschland. Fair fuels? Working paper 3, Institut für ökologiche Wirtschaftsforschung, Berlin

  • Berkhout F, Bouwer L, Bayer JM, Bouzid, Cabeza M, Hanger S, Hof AP, Meller HL, Patt A, Pfluger BT, Reichardt RK, van Teeffelen AJA (2015) European policy responses to climate change: progress on mainstreaming emissions reduction and adaptation. Reg Environ Chang 15:949–959.

  • Blamey RK, Bennett JW, Louviere JJ, Morrison MD, Rolfe J (2000) A test of policy labels in environmental choice modelling studies. Ecol Econ 32:269–286.

    Article  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238.

    Article  Google Scholar 

  • Bonzanigo L, Bojovic D, Maziotis A, Giupponi C (2016) Agricultural policy informed by farmers’ adaptation experience to climate change in Veneto, Italy. Reg Environ Chang 16:245–258.

  • Bost M, Böther T, Hirschl B, Kreuz S, Neumann A, Weiß J (2012) Erneuerbare Energien Potenziale in Brandenburg 2030. In: Erschließbare technische Potenziale sowie Wertschöpfungs- und Beschäftigungseffekte – eine szenariobasierte Analyse. IÖW, Berlin

    Google Scholar 

  • Bouët A, Dimaranan B, Valin H (2010) Modeling the global trade and environmental impacts of biofuel policies, Discussion Paper 010118. IFPRI, Washington DC

    Google Scholar 

  • Brendel F (2011) Energie im großen Stiel. Auswirkungen des Biogas-Booms auf Umwelt, Artenvielfalt und Landwirtschaft. WWF Deutschland, Berlin

    Google Scholar 

  • Breustedt G, Habermann H (2010) Einfluss der Biogaserzeugung auf landwirtschaftliche Pachtpreise in Deutschland. Universität Kiel, Kiel

    Google Scholar 

  • Brown C, Bakam I, Smith P, Matthews R (2016) An agent-based modelling approach to evaluate factors influencing bioenergy crop adoption in north-east Scotland. GCB Bioenergy 8:226–244.

    Article  Google Scholar 

  • Carey MA, Asbury J-E (2016) Focus group research. Routledge, London and New York

    Google Scholar 

  • Charles C (2012) Should we be concerned about competition between food and fuel? Analysis of biofuel consumption mandates in the European Union and the United States. IISD, Winnipeg

    Google Scholar 

  • Cotula L, Dyer N, Vermeulen S (2008) Fuelling exclusion? The biofuels boom and poor People’s access to land. IIED, London

    Google Scholar 

  • de Gorter H, Drabik D, Just DR (2011) The economics of a blender’s tax credit versus a tax exemption: the case of U.S. “Splash and Dash” biodiesel exports to the European Union. Appl Econ Perspect Policy 33(4):510–527. 024

    Article  Google Scholar 

  • Desarbo WS, Ramaswamy V, Cohen SH (1995) Market segmentation with choice-based conjoint analysis. Mark Lett 6(2):137–147.

    Article  Google Scholar 

  • Dillon B, Mukherjee S, 2006. A guide to the design and execution of segmentation studies. In: Grover R, Vriens M, editors. The handbook of marketing research: uses, misuses, and future advances. SAGE Publications

  • Dolnicar S (2002) A review of data-driven market segmentation in tourism. J Travel Tour Mark 12(1):1–22.

    Article  Google Scholar 

  • Dymnicki AB, Henry DB (2011) Use of clustering methods to understand more about the case. Methodological Innovations Online 6(2):6–26.

    Article  Google Scholar 

  • Ecofys (2011) International biodiesel markets. In: Developments in production and trade. UFOP Schriften, Biodiesel & Co., Berlin

    Google Scholar 

  • Elsawah S, Guillaume JHA, Filatova T, Rook J, Jakeman AJ (2015) A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models. J Environ Manag 151:500–516.

    Article  Google Scholar 

  • Fairley P (2011) Next generation biofuels. Introduction Nature 474:S2–S5

    CAS  Article  Google Scholar 

  • [FNR] Fachagentur Nachwachsende Rohstoffe 2014. Entwicklung Biodiesel-Produktion und -Absatz in Deutschland. Cited August 22, 2014

  • [FNR] Fachagentur Nachwachsende Rohstoffe 2015. Primärenergieverbruach 2015. Cited October 22, 2016

  • German L, Schoneveld GC, Pacheco P (2011) The social and environmental impacts of biofuel feedstock cultivation: evidence from multi-site research in the forest frontier. Ecol Soc 16(3), Art.):24.

    Article  Google Scholar 

  • Green PE, Srinivasan V (1990) Conjoint analysis in marketing: new developments with implications for research and practice. J Mark 54:3–19.

    Article  Google Scholar 

  • Green PE, Krieger AM, Wind Y (2001) Thirty years of conjoint analysis: reflections and prospects. Interfaces 31(3):S56–S73.

    Article  Google Scholar 

  • Hagedorn K (2011) Die Landwirtschaft in Brandenburg unter dem Einfluss der Globalisierung. In: Diskussionspaper 13. BBAW, IAG Globaler Wandel-Regionale Entwicklung, Berlin

    Google Scholar 

  • Hair JF, Anderson RE, Tatham RL, Black WL (1995) Multivariate data analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Hoek J, Gendall P, Esslemont D (1996) Market segmentation a search for the holy grail? J Mark Pract: Appl Mark Sci 2(1):25–34.

    Article  Google Scholar 

  • Howley, P., Hynes, S., Donoghue, O C. 2012. Explaining the non-economic behaviour of farm foresters: The effect of productivist and lifestyle motivations. Working Paper 12-WP-RE-03. Available at: (29 July 2017)

  • [IPCC] Intergovernmental Panel on Climate Change (2007) Summary for policy makers. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of working group III to the fourth assessment report on the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Kaphengst T, Wunder S, Timeus K (2012) The social dimension of EU biofuel policy. Ecologic Briefs, Berlin

    Google Scholar 

  • Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43(3):961–967. 802681k

    CAS  Article  Google Scholar 

  • Kok M, Lüdeke M, Lucas P, Sterzel T, Walther C, Janssen P, Sietz D, Soysa Indra de (2016) A new method for analysing socio-ecological patterns of vulnerability. Reg Environ Chang 16:229–243.

  • Lasch P, Kollas C, Rock J, Suckow F (2010) Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change. Reg Environ Chang 10:83–94.

  • Lee KC, Choi H, Lee DH, Kang S (2006) Quantitative measurement of quality attribute preferences using conjoint analysis. In: Gilroy SW, Harrison MD (eds) Interactive systems: lecture notes in computer science. Springer-Verlag, Berlin, pp 213–224

    Google Scholar 

  • Lim-Camacho L, Ariyawardana A, Lewis GK, Crimp S, Somogyi S, Ridoutt B, Howden M (2017) Climate adaptation of food value chains: the implications of varying consumer acceptance. Reg Environ Chang 17(1):93–103.

  • Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, van Meijl H, Hasegawa T, Popp A, Schmitz C, Tabeau A, Valin H, Willenbockel D, Wise M (2013) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45(1):103–116.

  • [LUA] Landesumweltamt Brandenburg (Eds.), 2009. Umweltdaten Brandenburg 2008/09, Hellograph, Potsdam

  • Luderer G, Bosetti V, Jakob M, Leimbach M, Steckel J, Waisman H, Edenhofer O (2012) The economics of decarbonizing the energy system: results and insights from the RECIPE model intercomparison. Clim Chang 114:9–37.

    Article  Google Scholar 

  • [LUGV] Landesamt für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, 2014. Leitfaden zur Renaturierung von Feuchtgebieten in Brandenburg. LUA Band 50 Ökologie, Potsdam

  • Meller L, van Vuuren DP, Cabeza M (2015) Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios. Reg Environ Chang 15:961–971.

    Article  Google Scholar 

  • [MIL] Ministerium für Infrasturktur und Landwirtschaft des Landes Brandenburg 2012. Agrarbericht 2011/2012, Potsdam

  • Moran D, Mcvittie A, Allcroft DJ, Elston DA (2007) Quantifying public preferences for agri-environmental policy in Scotland: a comparison of methods. Ecol Econ 63:42–53.

    Article  Google Scholar 

  • Nainggolan D, Termansen M, Reed MS Cebollero ED, Hubacek K (2013) Farmer typology, future scenarios and the implications for ecosystem service provision: a case study from south-eastern Spain. Reg Environ Chang 13:601–614.

  • Nölting, B., Boeckmann, T. 2005 Struktur der ökologischen Land- und Ernährungswirtschaft in Brandenburg und Berlin–Anknüpfungspunkte für eine nachhaltige Regionalentwicklung. Diskussionspapier Nr. 18/05, Zentrum Technik und Gesellschaft, TU Berlin

  • Orme B (2009) CBC/HB v5 software for hierarchical bayes estimation for CBC data. Sawtooth Software, Inc., Sequim (WA)

    Google Scholar 

  • Piroli G, Ciaian P, Kancs d’A (2012) Land use change impacts of biofuels: near-VAR evidence from the US. Ecol Econ 84:98–109.

    Article  Google Scholar 

  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021.

    CAS  Article  Google Scholar 

  • Rajagopal D, Plevin RJ (2013) Implications of market-mediated emissions and uncertainty for biofuel policies. Energ Policy 56:75–82.

    Article  Google Scholar 

  • Reyer C, Bachinger J, Bloch R, Hattermann F, Ibisch P, Kreft S, Lasch P, Lucht W, Nowicki C, Spathelf P, Stock M, Welp M (2012) Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Reg Environ Chang 12:523–542.

  • Ribeiro BE (2013) Beyond commonplace biofuels: social aspects of ethanol. Energ Policy 57:355–362.

    Article  Google Scholar 

  • Rosillo-Calle, F., 2012. Food versus Fuel: toward a new paradigm—the need for a holistic approach. ISRN Renewable Energy 2012, Article ID 954180

  • Sayadi S, Gonzalez-Roa MC, Calatrava-Requena J (2005) Ranking versus scale rating in conjoint analysis: evaluating landscapes in mountainous regions in southeastern Spain. Ecol Econ 55:539–550.

    Article  Google Scholar 

  • Sayadi S, Gonzalez-Roa MC, Calatrava-Requena J (2009) Public preferences for landscape features: the case of agricultural landscape in mountainous Mediterranean areas. Land Use Policy 26:334–344.

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu Tun-Hsiang (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240.

  • Shih MY, Jheng JW, Lai LF (2010) A two-step method for clustering mixed categorical and numeric data. Tamkang J Sci Eng 13(1):11–19

    Google Scholar 

  • Statistics Berlin-Brandenburg 2014 19 Accessed Sept 2014

  • Stevens TH, White S, Kittredge DB, Dennis D (2002) Factors affecting NIPF landowner participation in management programs: a Massachusetts case study. J For Econ 184:169–184.

    Google Scholar 

  • Tano K, Kamuanga M, Faminow MD, Swallow B (2003) Using conjoint analysis to estimate farmer’s preferences for cattle traits in West Africa. Ecol Econ 45:393–407.

    Article  Google Scholar 

  • Tkaczynski A (2016) Segmentation using two-step cluster analysis. In: Dietrich T, Rundle-Thiel S, Kubacki K (eds) Segmentation in social marketing-process, methods and application. Springer, Singapore

    Google Scholar 

  • Venghaus S, Selbmann K (2014) Biofuel as social fuel: introducing socio-environmental services as a means to reduce global inequity? Ecol Econ 97:84–92.

  • [WBGU] Wissenschaftlicher Beirat der Bundesregierung für Globale Umweltveränderungen (German Advisory Council on Global Change) (2008) Future land use and sustainable bioenergy. WBGU, Berlin

    Google Scholar 

  • [WCED] World Commission on Environment and Development 1987. Our common future. Aka.‘The Brundtland Report’, Oxford University Press, Oxford

  • Witcover J, Yeh S, Sperling D (2013) Policy options to address global land use change from biofuels. Energ Policy 56:63–74.

    Article  Google Scholar 

  • Zichy, M., Dürnberger, C., Formowitz, B., Uhl, A., 2014. Energie aus Biomasse—ein ethisches Diskussionsmodell. Springer, Wiesbaden, 2011/2014

  • Zschache U, von Cramon-Taubadel S, Theuvsen L (2009) Die öffentliche Auseinandersetzung über Bioenergie in den Massenmedien. Discussion Papers, Nr. 0906. Department for Agricultural Economics and Rural Development. Georg-August University Göttingen, Göttingen

Download references

Funding information

This research was funded by the German Federal Ministry of Education and Research (BMBF) as part of its FONA-program in social-ecological research (FKZ 01UU0901A).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sandra Venghaus.

Additional information

Editor: Diana Sietz

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venghaus, S., Acosta, L. To produce or not to produce: an analysis of bioenergy and crop production decisions based on farmer typologies in Brandenburg, Germany. Reg Environ Change 18, 521–532 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Energy crops
  • Farmer typologies
  • Bioenergy
  • Cluster analysis
  • Conjoint analysis