Runoff fluctuations in the Selenga River Basin

Abstract

The Selenga River has historically provided 50% of the total freshwater water input to the Lake Baikal, transporting substances and pollutants that can considerably impact the unique lake ecosystem. In the context of on-going regional to global change, we here aim at identifying and understanding mechanisms behind spatial and temporal variability and trends in the flow of the Selenga River and its tributaries, based on hydrological and meteorological station data (since the 1930s), remote sensing, and statistical analyses. Results show that the flow of the Selenga River exhibits cycles with phases of high flows lasting 12 to 17 years and phases of low flows that historically lasted for about 7 years. However, despite an asynchronous behavior between right-bank tributaries and left-bank tributaries, the flow of the Selenga River near its delta at Lake Baikal has now been low (30% below the 1934–1975 average) for as long as 20 years, due to reduced input from precipitation, particularly during the summer season. Observed decreases in annual maximum hourly flows and decreases in annual minimum 30-day flows are consistent with increasing activation of the groundwater system due to thawing permafrost, and higher winter temperatures that support increased winter flows by preventing rivers to freeze from top to bottom. These recent and relatively large changes have implications for regional water planning and management, including the planned large-scale hydropower expansion in the upper part of the Selenga River Basin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Afanas’ev AN (1967) Fluctuations of the hydrometeorological regime in the USSR. Nauka, Moscow

    Google Scholar 

  2. Alcamo J, Henrich T (2002) Critical regions: a model based estimation of world water resources sensitive to global changes. Aquat Sci 64:352–363. doi:10.1007/PL00012591

    Article  Google Scholar 

  3. Arnell NW (1999) Climate change and global water resources. Glob Environ Chang 9:831–849. doi:10.1016/S0959-3780(99)00017-5

  4. Arnell NW, van Vuuren DP, Isaac M (2011) The implications of climate policy for the impacts of climate change on global water resources. Glob Environ Chang 21:592–603. doi:10.1016/j.gloenvcha.2011.01.015

    Article  Google Scholar 

  5. Automated information system of State monitoring of water bodies (2015) <https://gmvo.skniivh.ru/index.php?id=1> Accessed 26 Nov 2015

  6. Berezhnykh TV, Marchenko OY, Abasov NV, Mordvinov VI (2012) Changes in the summer time atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga river basin. Geogr Nat Resour 33(3):61–68. doi:10.1134/S1875372812030079

    Article  Google Scholar 

  7. Bol'shev LN, Smirnov NV (1983) Tables of mathematical statistics. Nauka, Moscow

    Google Scholar 

  8. Bradley SB, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. doi:10.1126/science.1128087

    CAS  Article  Google Scholar 

  9. Bring A, Asokan SM, Jaramillo F, Jarsjö J, Levi L, Pietroń J, Prieto C, Rogberg P, Destouni G (2015) Implications of freshwater flux data from the CMIP5 multi-model output across a set of northern hemisphere drainage basins. Earth’s Future 3(6):206–217. doi:10.1002/2014EF000296

    Article  Google Scholar 

  10. Bulychev AA, Dzhamalov RG, Sidorov RV (2012) Use of data of satellite system for gravity recovery and climate experiment (GRACE) for studying and assessment of hydrological-geohydrological characteristics of large river basins. Water Res 39(5):514–522. doi:10.1134/S0097807812040021

    CAS  Article  Google Scholar 

  11. Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30(4):492–507. doi:10.1007/s00267-002-2737-0

    Article  Google Scholar 

  12. Chalov SR, Jarsjö J, Kasimov NS, Romanchenko AO, Pietroń J, Thorslund J, Promakhova EV (2015) Spatio-temporal variation of sediment transport in the Selenga River basin, Mongolia and Russia. Environ Earth Sci 73(2):663–680. doi:10.1007/s12665-014-3106-z

    CAS  Article  Google Scholar 

  13. Chalov S, Thorslund A, Kasimov N, Ilyicheva E, Pietron J, Shinkareva G, Tarasov M, Lychagin M, Pavlov M, Karthe D, Nittrouer J, Aybullatov D, Kositsky A, Garmae E, Jarsjö J (2016) The Selenga River delta: a geochemical barrier protecting Lake Baikal’s waters. Reg Environ Chang. doi:10.1007/s10113-016-0996-1

  14. CRU TS database <https://crudata.uea.ac.uk/cru/data/hrg/> Accessed 20 Oct 2015

  15. Dashkhuu D, Kim JP, Chun JA, Lee W (2015) Long-term trends in daily temperature extremes over Mongolia. Weather Clim Extrem 8:26–33. doi:10.1016/j.wace.2014.11.003

    Article  Google Scholar 

  16. Davi NK, Jacoby GC, Curtis AE, Baatarbileg N (2006) Extension of drought records for Central Asia using tree rings: West-Central Mongolia. J Clim 19:288–299. doi:10.1175/JCLI3621.1

    Article  Google Scholar 

  17. Davi NK, Jacobe G, Fang K, Li J, D’Arrigo R, Baatarbileg N, Robinson D (2010) Reconstructing drought variability for Mongolia based on a large-scale tree ring network. J Geophys Res 115:1520–1993. doi:10.1029/2010JD013907

    Article  Google Scholar 

  18. Dzhamalov RG, Frolova NL, Telegina EA (2015) Winter runoff variations in European Russia. Water Res 42(6):758–765. doi:10.1134/S0097807815060032

    CAS  Article  Google Scholar 

  19. Evstigneev VM, Magritskiy DV (2013) Practical exercises on the course “river runoff and hydrological calculations”. Geographical faculty of MSU, Moscow

    Google Scholar 

  20. Frappart F, Ramillien G, Famiglietti JS (2011) Water balance of the Arctic drainage system using GRACE gravimetry products. Int J Remote Sens 32:431–453. doi:10.1080/01431160903474954

    Article  Google Scholar 

  21. Garmaev EJ, Khristoforov AV (2010) Water resources of the rivers of the Lake Baikal Basin: basics of their use and protection. Geo, Novosibirsk

  22. GRACE (2015) Monthly mass grids - land <http://grace.Jpl.Nasa.Gov/data/get-data/monthly-mass-grids-land/> Accessed 10 Dec 2015

  23. Grechushnikova MG, Edelshtein KK (2016) Express-assessment of hydraulic construction effects in the Selenga river basin. Water Sect Russ 1:66–82. https://elibrary.ru/item.asp?id=25593529

  24. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  25. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  26. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  27. Immerzeel WW, Droogers P, Jong SMD, Bierkens MFP (2009) Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens Environ 113(1):40–49. doi:10.1016/j.rse.2008.08.010

    Article  Google Scholar 

  28. Jarsjö J, Asokan SM, Prieto C, Bring A, Destouni G (2012) Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrol Earth Syst Sci 16:1335–1347. doi:10.5194/hess-16-1335-2012

    Article  Google Scholar 

  29. Karthe D, Chalov S, Borchardt D (2015) Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ Earth Sci 73(2):487–499. doi:10.1007/s12665-014-3789-1

  30. Khristoforov AV (1994) Theory of stochastic processes in hydrology. Lomonosov MSU, Moscow

    Google Scholar 

  31. Kopp BJ, Jens Lange J, Menzel L (2016) Effects of wildfire on runoff generating processes in northern Mongolia. Reg Environ Chang. doi:10.1007/s10113-016-0962-y

  32. Korytny LM, Bazhenova OI, Martianova GN, Ilyicheva EA (2003) The influence of climatic change and human activity on erosion processes in sub-arid watersheds in southern East Siberia. Hydrol Process 17(16):3181–3193. doi:10.1002/hyp.1382

  33. Latysheva IV, Sinyukovich VN, Chumakova EV (2009) Recent peculiarities of hydrological and meteorological regime of the Lake Baikal Southern Coast. Bull Irkutsk State Univ (Earth Sci) 2:117–133. http://isu.ru/en/research/izvestia/article.html?article=o-286-1269848168883&journal=o-0-1269843364101

  34. Map of the World distribution of arid regions. Explanatory note, man and biosphere MAB (1979) UNESCO Press, Paris

  35. Meshcherskaya AV, Obyazov VA, Bogdanova EG, Mirvis VM, Il’in BM, Snitsarenko NI, Golod MP, Smirnova AA, Obyazova AI (2009) Changes in Transbaikalian climate in the second half of the XX century by observational data and its anticipated changes in the first quarter of the XXI century. Proc Voeikov Main Geophys Obs 559:32–57. http://voeikovmgo.ru/download/559.pdf

  36. Mohammad AAZ, Bellie S, Ashish S (2015) Assessment of global aridity change. J Hydrol 520:300–313. doi:10.1016/j.jhydrol.2014.11.033

    Article  Google Scholar 

  37. Mun Y, Ko IH, Janchivdor L, Gomboev B, Kang SI, Ch-H L (eds) (2008) Integrated water management model on the Selenga river basin. Status survey and investigation. KEI, Seoul

    Google Scholar 

  38. Obyazov VA, Smakhtin VK (2012) Long-term regime of Transbaikalian river runoff: analysis and background forecast. Water Sect Russ 1:63–72. https://elibrary.ru/item.asp?id=17681414

  39. Obyazov VA, Smakhtin VK (2013) Climate change effects on winter river runoff in Transbaikalia. Russ Meteorol Hydrol 7:95–102. doi:10.3103/S1068373913070091

    Google Scholar 

  40. Otgonsuren S, Erdenesukh S (2013) To estimate streamflow: long-term prediction for Ongi River. In: Environment and sustainable development in Mongolian plateau and adjacent territories: materials of the IX intern. Conf. BSU, Ulan-Ude, vol. 1, pp 45-48

  41. Ponomarev VI, Dmitrieva EV, Shkorba SP (2015) Cimatic regimes features in the northern part of Asia-Pacific region. Control Syst Environ 21(1):67–72. https://elibrary.ru/item.asp?id=25733068

  42. Ptitsyn AB, Reshtova SA, Babich VV, Dar’in AV, Kalugin IA, Ovchinnikov DV, Panizzo V, Myglan VS (2010) Palaeoclimate chronology and aridization tendencies in Transbaikalia for the last 1900 years. Geogr Nat Resour 31(2):144–147. doi:10.1016/j.gnr.2010.06.009

  43. Quandin S, Jun Z, Jiyuan L (2013) Impact of land use/cover type on climate warming in Inner Mongolia plateau in: environment and sustainable development in Mongolian plateau and adjacent territories: materials of the IX intern. Conf. BSU, Ulan-Ude, vol.1, pp 49-53

  44. Ratkowich DY (1976) Long-term fluctuations of river runoff. Gidrometeoizdat, Leningrad

    Google Scholar 

  45. Rozhdestvensky AV, Lobanova AG, Lobanova VA, Sacharuk AV (2010) Methodological recommendations for assessment the homogeneity of the hydrological characteristics and definition of their calculation values for heterogeneous data. Nestor-istoriya, St. Petersburg

    Google Scholar 

  46. Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333:144–154. doi:10.1016/j.jhydrol.2006.07.023

    Article  Google Scholar 

  47. Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, Koenig R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4):319–334. doi:10.1007/s10712-008-9033-3

    Article  Google Scholar 

  48. Schneider C, Laize CLR, Acreman MC, Florke M (2013) How will climate change modify river flow regimes in Europe? Hydrol Earth Syst Sci 17(1):325–339. doi:10.5194/hess-17-325-2013

    Article  Google Scholar 

  49. Second Roshydromet Assessment Report on Climate Change and its Consequences in the Russian Federation (2014) Roshydromet, Moscow

  50. Shimaraev MN, Starygina LN (2010) Lake Baikal: zonal atmospheric circulation, climate and hydrological processes (1968-2007). Geogr Nat Resour 3:62–68. doi:10.1016/j.gnr.2010.09.009

  51. Shimaraev MN, Kuimova LN, Sinyukovich VN, Tsekhanovsky VV (2002) Climate and hydrological processes in Lake Baikal in the 20th century. Rep Russ Acad Sci 3:397–400. https://www.researchgate.net/publication/290742313_Climate_and_hydrological_processes_in_Lake_Baikal_in_the_20th_century

  52. Sinyukovich VN, Sizova LN, Shimaraev MN, Kurbatova NN (2013) Characteristics of current changes in water inflow into lake Baikal. Geogr Nat Resour 4:57–63. doi:10.1134/S1875372813040082

  53. Smith LC, Pavelsky TM, MacDonald GM, Shiklomanov AI, Richard B, Lammers RB (2007) Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. Geophys Res 112:G04S47. doi:10.1029/2006JG000327

    Article  Google Scholar 

  54. Sorokovikova LM, Popovskaya GI, Tomberg IV, Sinyukovich VN, Kravchenko OS, Marinaite II, Bashenkhaeva NV, Khodzher TV (2013) The Selenga River water quality on the border with Mongolia at the beginning of the 21st century. Russ Meteorol Hydrol 38(2):126–133. doi:10.3103/S1068373913020106

    Article  Google Scholar 

  55. State water cadaster (2016) Resources of surface and underground waters, their use and quality. Annual edition. Year 2015. Roshydromet, Saint Petersburg

  56. Thorslund J, Jarsjö J, Chalov SR, Belozerova EV (2012) Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. J Environ Monit 14:2780–2792. doi:10.1039/C2EM30643C

    CAS  Article  Google Scholar 

  57. Thorslund J, Jarsjö J, Wällstedt T, Mörth CM, Lychagin M, Chalov SR (2016) Speciation and hydrological transport of metals in non-acidic river systems of the Lake Baikal Basin: field data and model predictions. Reg Environ Chang. doi:10.1007/s10113-016-0982-7

  58. Törnqvist R, Jarsjö J, Karimov B (2011) Health risks from large-scale water pollution: trends in Central Asia. Environ Int 37:435–442. doi:10.1016/j.envint.2010.11.006

    Article  Google Scholar 

  59. Törnqvist R, Jarsjö J, Pietron J, Bring A, Rogberg P, Asokan SM, Destouni G (2014) Evolution of the hydro-climate system in the Lake Baikal basin. J Hydrol 519:1953–1962. doi:10.1016/j.jhydrol.2014.09.074

    Article  Google Scholar 

  60. Törnqvist R, Jarsjö J, Thorslund J, Rao PSC, Basu NB, Destouni G (2015) Mechanisms of basin-scale nitrogen load reductions under intensified irrigated agriculture. PLoS One 10(3):e0120015. doi:10.1371/journal.pone.0120015

    Article  Google Scholar 

  61. Velicogna I, Tong J, Zhang T, Kimball JS (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys Res Lett 39(9):L09403. doi:10.1029/2012GL051623

    Article  Google Scholar 

  62. Voloshin AL, Tulokhonov AK, Andreev SG, Beshentsev AN, Rupyshev YuA (2006) Current research on arid geosystems of Transbaikalia. In: Matishov GG (ed) Current problems of arid and semiarid ecosystems of the South of Russia. YuNTs RAN, Rostov-on-Don, pp 301–312

  63. Vrba J (2013) Groundwater resources in shallow transboundary aquifers in the Baikal Basin: current knowledge, protection and management. <http://baikaliwlearnorg/en/project/project-tender-reports-2012/publications/groundwater-resources-in-shallow-transboundary-aquifers-in-the-baikal-basin-current-knowledge-protection-and-management/view> Accessed 10 Oct 2015

  64. Yang T, Wanga C, Chen Y, Chen X, Yu Z (2015) Climate change and water storage variability over an arid endorheic region. J Hydrol 529:330–339. doi:10.1016/j.jhydrol.2015.07.051

    Article  Google Scholar 

  65. Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafr Periglac Process 14:151–160. doi:10.1002/ppp.451

    Article  Google Scholar 

  66. Zhao L, Wu Q, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in central Asia during the international polar year. Permafr Periglac Process 21:198–207. doi:10.1002/ppp.688

    Article  Google Scholar 

  67. Zotov LV, Frolova NL, Grigoriev VY, Kharlamov MA (2015a) Application of the satellite system of the Earth’s gravity field measurement (GRACE) for the evaluation of water balance in river catchments. Moscow University Vestnik. Series 5. Geography 4:27–33

    Google Scholar 

  68. Zotov LV, Shum CK, Frolova NL (2015b) Gravity changes over Russian rivers basins from GRACE. In: Jin S, Haghighipour N, Ip W (eds) Planetary exploration and science: recent results and advances. <http://www.Springer.Com/earth+sciences+and+geography/geophysics/book/978-3-662-45051-2> Springer, Verlag, pp 45–59

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (statistical calculations and the analysis of results at the expense of grant no. 14-17-00155, and gravimetric research at the expense of grant no. 14-17-00700). The last author acknowledges funding from and the Swedish Research Council Formas (project 2012-790).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pelagiya A. Belyakova.

Electronic supplementary material

Supplementary Table 1

(DOCX 13 kb).

Supplementary Table 2

(DOCX 25 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frolova, N.L., Belyakova, P.A., Grigoriev, V.Y. et al. Runoff fluctuations in the Selenga River Basin. Reg Environ Change 17, 1965–1976 (2017). https://doi.org/10.1007/s10113-017-1199-0

Download citation

Keywords

  • Runoff fluctuations
  • Climate change
  • Selenga River
  • Lake Baikal
  • Low flow period