Advertisement

Regional Environmental Change

, Volume 17, Issue 8, pp 2477–2493 | Cite as

Spatio-temporal change of ecosystem services as a key to understand natural resource utilization in Southern Chile

  • Karla E. Locher-KrauseEmail author
  • Sven Lautenbach
  • Martin Volk
Original Article

Abstract

The understanding of how ecosystem services are distributed across the landscape and their change over time provides key information to manage multi-functional landscapes. To balance the conflicting demands on land multi-scale assessments are highly relevant, especially in biodiversity hot spot areas as the Valdivian temperate rain forest. We quantified six ecosystem services linked to forest ecosystems over six temporal periods (1985–2011): three regulating (carbon storage, sediment retention, phosphorous retention), one provisioning (plantation site productivity), and two cultural services (landscape aesthetics, forest recreation). The study area is divided in four geomorphological units (Coastal Mountain Range, Central Valley, Pre-Andean and Andes mountain range). Our results show a high spatial and temporal variability of ecosystem service supply in these units. We observed a strong increase of plantation production (Coastal Range and Central Valley) as well as of forest recreation services over time (Coastal and Andes ranges); remaining service trends varied across units and time. Recommendations for landscape management are (i) an increase of buffer strips to reduce diffuse emissions into the river network and to enhance ecological connectivity, (ii) an increase of protected areas in the Central Valley, and (iii) a rethinking of the role of exotic forest plantations.

Keywords

Landscape multi-functionality Spatio-temporal analysis Mapping of ecosystem services Deforestation Exotic forest plantations Land use change South America 

Notes

Acknowledgments

We would like to thank Patricio Romero, Prof. Jorge Gayoso, and Prof. Dr. Sandoval for the valuable discussion/comments and two anonymous reviewers for their helpful comments. This research was supported by a Becas Chile-DAAD pre-doctoral fellowship (Government of Chile and the German Academic Exchange Service—A1086435).

Supplementary material

10113_2017_1180_MOESM1_ESM.docx (61 kb)
ESM 1 (DOCX 61 kb).
10113_2017_1180_MOESM2_ESM.docx (17.4 mb)
ESM 2 (DOCX 17820 kb).

References

  1. Albaugh JM, Dye PJ, King JS (2013) Eucalyptus and water use in South Africa. Int J for res. doi: 10.1155/2013/852540
  2. Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R (2009) Phosphorus export from catchments: a global view. J North am Benthol Soc 28:805–820. doi: 10.1899/09-073.1 CrossRefGoogle Scholar
  3. Andersson K, Lawrence D, Zavaleta J, Guariguata MR (2016) More trees, more poverty? The socioeconomic effects of tree plantations in Chile, 2001–2011. Environ Manag 57:123–136. doi: 10.1007/s00267-015-0594-x CrossRefGoogle Scholar
  4. Andrieu E, Vialatte A, Sirami C (2015) Misconceptions of fragmentation’s effects on ecosystem services: a response to Mitchell et al. Trends Ecol Evol 30:633–634. doi: 10.1016/j.tree.2015.09.003 CrossRefGoogle Scholar
  5. Armesto JJ, Villagran C, Arroyo MK (1996) Ecologia de los Bosques Nativos de ChileGoogle Scholar
  6. Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, Abarzúa AM,  Marquet PA (2010) From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land use Policy 27:148–160. doi: 10.1016/j.landusepol.2009.07.006
  7. Bagstad KJ, Semmens DJ, Waage S, Winthrop R (2013) A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv 5:27–39. doi: 10.1016/j.ecoser.2013.07.004 CrossRefGoogle Scholar
  8. Balvanera P, Uriarte M, Almeida-Leñero L, Altesor A, DeClerck F, Gardner T, Hall J, Lara A, Laterra P, Peña-Claros M, Silva Matos DM, Vogl, AL, Romero-Duque LP, Arreola LF, Caro-Borrero AP, Gallego F, Jain M,  Little C, de Oliveira XR, Paruelo JM, Peinado JE, Poorter L, Ascarrunz N, Correa F, Cunha-Santino MB,Hernández-Sánchez AP, Vallejos M (2012) Ecosystem services research in Latin America: the state of the art. Ecosyst Serv 2:56–70. doi: 10.1016/j.ecoser.2012.09.006
  9. Bathurst JC, Iroumé A, Cisneros F, Fallas J, Iturraspe R, Gaviño Novillo M, Urciuolo A, de Bièvre B, Guerrero Borges V, Coello C, Cisneros P, Gayoso J, Miranda M, Ramírez M (2011) Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 1: field data analysis. J Hydrol 400:281–291. doi: 10.1016/j.jhydrol.2010.11.044
  10. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x CrossRefGoogle Scholar
  11. Bennett EM, Cramer W, Begossi A, Cundill G, Díaz S, Egoh BN, Geijzendorffer IR, Krug CB, Lavorel S, Lazos E, Lebel L, Martín-López B, Meyfroidt P,  Mooney H, Nel JL, Pascual U, Payet K, Harguindeguy NP, Peterson GD, Prieur-Richard AH, Reyers B, Roebeling P, Seppelt R, Solan M, Tschakert P, Tscharntke T, Turner BL, Verburg PH, Viglizzo EF, White PC, Woodward G (2015) Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr Opin Environ Sustain 14:76–85. doi: 10.1016/j.cosust.2015.03.007
  12. Birkhofer K, Diehl E, Andersson J, Ekroos J, Früh-Müller A, Machnikowski F, Mader VL, Nilsson L, Sasaki K, Rundlöf M, Wolters V, Smith HG (2015) Ecosystem services-current challenges and opportunities for ecological research. Front Ecol Evol 2:1–12. doi: 10.3389/fevo.2014.00087
  13. Bonilla CA, Reyes JL, Magri A (2010) Water erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, central Chile. Chil J Agric res 70:159–169. doi: 10.4067/S0718-58392010000100017 CrossRefGoogle Scholar
  14. Breiman L (2001) Random forests. Mach Learn:5–32. doi: 10.1023/A:1010933404324
  15. Burkhard B, Kandziora M, Hou Y, Müller F (2014) Ecosystem service potentials, flows and demands—concepts for spatial localisation, indication and quantification. Landsc Online 34:1–32. doi: 10.3097/LO.201434 CrossRefGoogle Scholar
  16. Central Bank of Chile (2016) Central Bank of Chile Statistics DatabaseGoogle Scholar
  17. CIREN (1994) Descripciones de suelos, materiales y simbolos. Estudio agrologico, SantiagoGoogle Scholar
  18. Clec’h SL, Oszwald J, Decaens T, Desjardins T, Dufour S, Grimaldi M, Jegou N, Lavelle Patrick (2016) Mapping multiple ecosystem services indicators: toward an objective-oriented approach. Ecol Indic 69:508–521. doi: 10.1016/j.ecolind.2016.05.021
  19. Costanza R, d’Arge R, de Groot RS, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260Google Scholar
  20. Cuevas JG, Soto D, Arismendi I, Pino M, Lara A, Oyarzún C (2006) Relating land cover to stream properties in southern Chilean watersheds: trade-off between geographic scale, sample size, and explicative power. Biogeochemistry 81:313–329. doi: 10.1007/s10533-006-9043-5
  21. Cunningham SC, Mac Nally R, Baker PJ, Cavagnaro TR, Beringer J, Thomson JR, Thompson RM (2015) Balancing the environmental benefits of reforestation in agricultural regions. Perspect Plant Ecol Evol Syst 17:301–317. doi: 10.1016/j.ppees.2015.06.001
  22. Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney H, Pejchar L, Ricketts TH,Salzman J, Shallenberger R (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7:21–28. doi: 10.1890/080025
  23. Dallimer M, Davies ZG, Diaz-porras DF, Irvine KN, Maltby L, Warren PH, Armsworth PR, Gaston KJ (2015) Historical influences on the current provision of multiple ecosystem services. Glob Environ Chang 31:307–317. doi: 10.1016/j.gloenvcha.2015.01.015
  24. de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L, Hussain S, Kumar P, McVittie A, Portela R,Rodriguez LC, ten Brink P, van Beukering P (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61. doi: 10.1016/j.ecoser.2012.07.005
  25. Di Castri F, Hajek ER (1976) Bioclimatologia de ChileGoogle Scholar
  26. Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:1300–1305. doi: 10.1371/journal.pbio.0040277 CrossRefGoogle Scholar
  27. Donoso C, Lara A (1999) Silvicultura de los Bosques nativos de Chile. Editorial Universitaria, SantiagoGoogle Scholar
  28. Echeverria C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130:481–494. doi: 10.1016/j.biocon.2006.01.017
  29. Echeverría C, Newton AC, Lara A, Rey Benayas JM, Coomes DA (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob Ecol Biogeogr 16:426–439. doi: 10.1111/j.1466-8238.2007.00311.x
  30. Echeverría C, Coomes D, Hall M, Newton AC (2008) Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol Model 212:439–449. doi: 10.1016/j.ecolmodel.2007.10.045 CrossRefGoogle Scholar
  31. Echeverría C, Newton AC, Nahuelhual L, Coomes D, Rey Benayas JM (2012) How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl Geogr 32:822–831. doi: 10.1016/j.apgeog.2011.08.014
  32. Eigenbrod F, Armsworth PR, Anderson BJ, Heinemeyer A, Gillings S, Roy DB, Thomas CD, Gaston KJ (2010) The impact of proxy-based methods on mapping the distribution of ecosystem services. J Appl Ecol 47:377–385. doi: 10.1111/j.1365-2664.2010.01777.x
  33. Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Klein Goldewijk K, Verburg PH (2013) Used planet: a global history. Proc Natl Acad Sci U S a 110:7978–7985. doi: 10.1073/pnas.1217241110
  34. ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  35. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized World Soil Database (version 1.2)Google Scholar
  36. Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Chang Biol 11:1565–1576. doi: 10.1111/j.1365-2486.2005.01011.x CrossRefGoogle Scholar
  37. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi: 10.1038/nature10452
  38. Gajardo R (1994) La vegetacion natural de Chile: clasificacion y distribucion geografica. Editorial Universitaria, SantiagoGoogle Scholar
  39. García O (1970) Indices de sitio para pino insigne en Chile. Instituto Forestal. Serie de Investigacion, SantiadoGoogle Scholar
  40. Gayoso J (2001) Medición de la capacidad de captura de carbono en bosques nativos y plantaciones de Chile. Trab Present en Taller Secuestro Carbono Mérida, Venez 2001:1–22Google Scholar
  41. Gayoso J, Guerra J (2005) Contenido de carbono en la biomasa aérea de bosques nativos en Chile *. Bosque 26:33–38CrossRefGoogle Scholar
  42. Gayoso J, Schlegel B (2003) Estudio Linea Base Carbono: Carbono en Bosques Nativos, Matorrales, y Praderas de la Decima Region de ChileGoogle Scholar
  43. Goldstein JH, Caldarone G, Colvin C, Duarte TK, Ennaanay D, Fronda K, Hannahs N, Mckenzie E, Mendoza G, Smith K, Woodside U, Daily GC (2008) The Natural Capital Project, Kamehameha Schools, and InVEST: integrating ecosystem services into land-use planning in Hawai’iGoogle Scholar
  44. Gonzalez P, Gayoso J (2005) Comparison of three methods to project future baseline carbon emissions in temperate rainforest, Curiñanco, pp 1–3Google Scholar
  45. Grêt-Regamey A, Weibel B, Bagstad KJ,  Ferrari M, Geneletti D, Klug H, Schirpke U, Tappeiner U (2014) On the effects of scale for ecosystem services mapping. PLoS One 9:e112601. doi: 10.1371/journal.pone.0112601
  46. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1–9. doi: 10.1126/sciadv.1500052
  47. Haines-Young R (2009) Land use and biodiversity relationships. Land use Policy 26:S178–S186. doi: 10.1016/j.landusepol.2009.08.009 CrossRefGoogle Scholar
  48. Hamel P, Chaplin-Kramer R, Sim S, Mueller C (2015) A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear catchment, North Carolina, USA. Sci Total Environ 524–525:166–177. doi: 10.1016/j.scitotenv.2015.04.027 CrossRefGoogle Scholar
  49. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276
  50. Huber A, Iroumé A, Bathurst JC (2008) Effect of Pinus radiata plantations on water balance in Chile. Hydrol Process 22:142–148. doi: 10.1002/hyp.6582 CrossRefGoogle Scholar
  51. Huygens D, Roobroeck D, Cosyn L, Salazar F, Godoy R, Boeckx P (2011) Microbial nitrogen dynamics in south central Chilean agricultural and forest ecosystems located on an Andisol. Nutr Cycl Agroecosystems 89:175–187. doi: 10.1007/s10705-010-9386-0
  52. INE Instituto Nacional de Estadística (2012) Compendio estadistico. SantiagoGoogle Scholar
  53. INFOR (1999) Disponibilidad de madera de plantaciones de pino radiata en Chile 1998–2027. Santiado, ChileGoogle Scholar
  54. IPCC (2007) Climate Change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change core writing team. IPCC, Geneva, p 104Google Scholar
  55. Iroume A (2003) Transporte de sedimentos en una cuenca de montaña en la Cordillera de los Andes de la Novena Región de Chile. Bosque (Valdivia) 24:125–135. doi: 10.4067/S0717-92002003000100010 CrossRefGoogle Scholar
  56. Jackson RB, Canadell J, Ehleringer JR, Mooney H, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi: 10.1007/BF00333714
  57. Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC, Jackson RB, Jobba EG, Roy SB, Barrett DJ, Cook CW, Farley KA, Maitre DC, McCarl B.A, Murray BC (2005) Trading water for carbon with biological carbon sequestration. Science 310(80):1944–1947. doi: 10.1126/science.1119282
  58. Kaufman YJ, Tanré D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys res Atmos 102:17051–17067. doi: 10.1029/96JD03988
  59. Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci U S a 106:11635–11640. doi: 10.1073/pnas.0901970106 CrossRefGoogle Scholar
  60. Lambin EF, Turner BLL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PSS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PSS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp T, Vogel C, Xu J, Veldkamp AT, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269. doi: 10.1016/S0959-3780(01)00007-3
  61. Lara A, Veblen TT (1993) Forest plantations in Chile: a successful model? Afforestation policies, planning and progress. London:118–139Google Scholar
  62. Lara A, Little C, Urrutia R, McPhee J, Álvarez-Garretón C, Oyarzún CE, Soto D, Donoso PJ, Nahuelhual L, Pino M, Arismendi I (2009) Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. For Ecol Manag 258:415–424. doi: 10.1016/j.foreco.2009.01.004
  63. Lara A, Little C, Nahuelhual L, Urrutia R, Díaz IA (2011) Lessons, challenges and policy recommendations for the management, conservation and restoration of native forests in Chile. Biodiversity Conservation in the Americas: Lessons and Policy Recommendations, Santiago, pp 259–299Google Scholar
  64. Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol Indic 11:676–687. doi: 10.1016/j.ecolind.2010.09.007 CrossRefGoogle Scholar
  65. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. Eos 89(10):93–94Google Scholar
  66. León-Muñoz J, Echeverría C, Marcé R, Riss W, Sherman B, Iriarte JL (2013) The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8 S). J Environ Manag 128:283–291. doi: 10.1016/j.jenvman.2013.05.008
  67. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22. doi: 10.1177/154405910408300516 Google Scholar
  68. Little C, Lara A, McPhee J, Urrutia R (2009) Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. J Hydrol 374:162–170. doi: 10.1016/j.jhydrol.2009.06.011 CrossRefGoogle Scholar
  69. Little C, Cuevas JG, Lara A, Pino M, Schoenholtz S (2014) Buffer effects of streamside native forests on water provision in watersheds dominated by exotic forest plantations. Ecohydrology. doi: 10.1002/eco.1575
  70. Locher-Krause KE, Volk M, Waske B, Thonfeld F, Lautenbach S (2017) Expanding temporal resolution in landscape transformations: insights from a landsat-based case study in Southern Chile. Ecol Indic 75:132–144. doi: 10.1016/j.ecolind.2016.12.036
  71. López-Vicente M, Poesen J, Navas A, Gaspar L (2013) Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 102:62–73. doi: 10.1016/j.catena.2011.01.001 CrossRefGoogle Scholar
  72. Machado A (2004) An index of naturalness. J Nat Conserv 12:95–110. doi: 10.1016/j.jnc.2003.12.002 CrossRefGoogle Scholar
  73. Manuschevich D (2016) Neoliberalization of forestry discourses in Chile. For Policy Econ 69:21–30. doi: 10.1016/j.forpol.2016.03.006 CrossRefGoogle Scholar
  74. Martínez Pastur G, Peri PL, Lencinas MV, García-Llorente M, Martín-López B (2015) Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc Ecol:383–399. doi: 10.1007/s10980-015-0254-9
  75. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim T (2006) A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci Remote Sens Lett 3:68–72. doi: 10.1109/LGRS.2005.857030
  76. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. WashingtonDC Isl Press 5:1–100. doi: 10.1196/annals.1439.003 Google Scholar
  77. Miranda A, Altamirano A, Cayuela L, Pincheira F, Lara A (2015) Different times, same story: native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Appl Geogr 60:20–28. doi: 10.1016/j.apgeog.2015.02.016
  78. Miranda A, Altamirano A, Cayuela L, Lara A, González M (2016) Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg Environ Chang. doi: 10.1007/s10113-016-1010-7
  79. Mitchell MGE, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908. doi: 10.1007/s10021-013-9647-2 CrossRefGoogle Scholar
  80. Mitchell MGE, Bennett EM, Gonzalez A (2014) Forest fragments modulate the provision of multiple ecosystem services. J Appl Ecol 51:909–918. doi: 10.1111/1365-2664.12241 CrossRefGoogle Scholar
  81. Mouchet MA, Lamarque P, Martín-López B, Crouzat E, Gos P, Byczek C, Lavorel S (2015) An interdisciplinary methodological guide for quantifying associations between ecosystem services. Glob Environ Chang. doi: 10.1016/j.gloenvcha.2014.07.012
  82. Mu Q, Ann HF, Maosheng Z, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ 106:285–304. doi: 10.1016/j.rse.2006.07.007 CrossRefGoogle Scholar
  83. Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800. doi: 10.1016/j.rse.2011.02.019 CrossRefGoogle Scholar
  84. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501
  85. Nahuelhual L, Carmona A, Lara A, Echeverría C, González ME (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landsc Urban Plan 107:12–20. doi: 10.1016/j.landurbplan.2012.04.006
  86. Nahuelhual L, Carmona A, Aguayo M, Echeverría C (2013a) Land use change and ecosystem services provision: a case study of recreation and ecotourism opportunities in southern Chile. Landsc Ecol:329–344. doi: 10.1007/s10980-013-9958-x
  87. Nahuelhual L, Carmona A, Lozada P, Jaramillo A, Aguayo M (2013b) Mapping recreation and ecotourism as a cultural ecosystem service: an application at the local level in Southern Chile. Appl Geogr 40:71–82. doi: 10.1016/j.apgeog.2012.12.004
  88. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KM, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11. doi: 10.1890/080023
  89. Niklitschek ME (2007) Trade liberalization and land use changes: explaining the expansion of afforested land in Chile. For Sci 53:385–394Google Scholar
  90. Núñez D, Nahuelhual L, Oyarzún CE (2006) Forests and water: the value of native temperate forests in supplying water for human consumption. Ecol Econ 58:606–616. doi: 10.1016/j.ecolecon.2005.08.010 CrossRefGoogle Scholar
  91. Nyland RD (2002) Silviculture: concepts and applications, 2nd edn. Waveland Press, IllinoisGoogle Scholar
  92. Olivares B, Verbist K, Lobo D, Vargas R, Silva O (2011) Evaluation of the USLE model to estimate water erosion in an Alfisol. J Soil Sci Plant Nutr 11:72–85. doi: 10.4067/S0718-95162011000200007
  93. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  94. Oyarzún CE, Hervé-Fernandez P (2015) Ecohidrology and nutrient fluxes in forest ecosystems of southern Chile. In: Lo Y-H, Blanco JA, Shovonlal R (eds) Biodiversity in ecosystems—linking structure and function. InTech, Fontana, pp 581–600. doi: 10.5772/59016
  95. Oyarzun CE, Campos H, Huber A (1997) Exportación de nutrientes en microcuencas con distinto uso del suelo en el sur de Chile (Lago Rupanco , X Región). 507–519Google Scholar
  96. Oyarzún CE, Godoy R, De Schrijver A, Staelens J, Lust N (2004) Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71:107–123. doi: 10.1007/s10533-004-4107-x
  97. Oyarzun CE, Aracena C, Rutherford P, Godoy R, Deschrijver A (2007) Effects of land use conversion from native forests to exotic plantations on nitrogen and phosphorus retention in catchments of southern Chile. Water air Soil Pollut 179:341–350. doi: 10.1007/s11270-006-9237-4
  98. Oyarzun CE, Hervé-fernández P, Huygens D, Boeckx P, Verhoest N (2015) Hydrological controls on nutrient exportation from old-growth evergreen rainforests and Eucalyptus nitens plantation in headwater catchments at Southern Chile. Open Journal of Modern Hydrology 5:19–31. doi: 10.4236/ojmh.2015.52003
  99. Patterson MW, Hoalst-Pullen N (2011) Dynamic equifinality: the case of south-central Chile’s evolving forest landscape. Appl Geogr 31:641–649. doi: 10.1016/j.apgeog.2010.12.004 CrossRefGoogle Scholar
  100. Pinilla S. J. (1998) Antecedentes zonas de isocrecimiento potencial para Eucalyptus. SantiadoGoogle Scholar
  101. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci U S a 105:20770–20775. doi: 10.1073/pnas.0806080105 CrossRefGoogle Scholar
  102. Qiu J, Turner MG (2013) Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc Natl Acad Sci U S a 110:12149–12154. doi: 10.1073/pnas.1310539110 CrossRefGoogle Scholar
  103. R Development Core Team (2016) R: a language and environment for statistical computingGoogle Scholar
  104. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci U S a 107:5242–5247. doi: 10.1073/pnas.0907284107 CrossRefGoogle Scholar
  105. Renard K, Freimund J (1994) Using monthly precipitation data to estimate R-factor in the revised USLE. J Hydrol 157:287–306CrossRefGoogle Scholar
  106. Renard D, Rhemtulla JM, Bennett EM (2015) Historical dynamics in ecosystem service bundles. Proc Natl Acad Sci U S a 112:13411–13416. doi: 10.1073/pnas.1502565112 CrossRefGoogle Scholar
  107. Rodríguez JP, Beard TD, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11:28Google Scholar
  108. Runkel RL, Crawford CG, Timothy A. Cohn (2004) Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and riversGoogle Scholar
  109. Salas C, Donoso PJ, Vargas R, Arriagada CA, Pedraza R, Soto DP (2016) The forest sector in Chile: an overview and current challenges. J for 114:1–10. doi: 10.5849/jof.14-062
  110. Schlatter JV, Gerding V (1995) Método de clasificación de sitios para la producción forestal, ejemplo en Chile. Bosque 16:13–20CrossRefGoogle Scholar
  111. Schlegel B (2001) Estimación de la biomasa y carbono en bosques del tipo forestal siempreverde. Simp Int Medición y Monit la Captura Carbono en Ecosistemas for 14:1–13Google Scholar
  112. Schlegel BC, Donoso PJ (2008) Effects of forest type and stand structure on coarse woody debris in old-growth rainforests in the Valdivian Andes, south-central Chile. For Ecol Manag 255:1906–1914. doi: 10.1016/j.foreco.2007.12.013 CrossRefGoogle Scholar
  113. Schröter M, Remme RP, Sumarga E, Barton DN, Hein L (2014) Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting. Ecosyst Serv. doi: 10.1016/j.ecoser.2014.07.003
  114. Seppelt R, Dormann CF, Eppink FV, Lautenbach S, Schmidt S (2011) A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. J Appl Ecol 48:630–636. doi: 10.1111/j.1365-2664.2010.01952.x
  115. SERNATUR, GORE Region de los Rios (2014) Plan de Accion Region de los Rios, sector turismo 2014–2018Google Scholar
  116. Sharp R, Tallis H, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M, Mandle L, Hamel P, Vogl AL, Rogers L, Bierbower W (2015) InVEST 3.2.0 User’s Guide. The Natural Capital Project. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife FundGoogle Scholar
  117. Siebert SF (2003) Beyond Malthus and perverse incentives: economic globalization forest conversion and habitat fragmentation. In: Bradshaw GA, Marquet P (eds) How landscapes change. Human disturbance and ecosystem fragmentation in the Americas. Springer, Berlin, pp 19–32Google Scholar
  118. SINIA M de MA (2015) Sistema de Información Ambiental GeográficaGoogle Scholar
  119. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31. doi: 10.1093/forestry/cpm041 CrossRefGoogle Scholar
  120. Syrbe R-UU, Walz U (2012) Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecol Indic 21:80–88. doi: 10.1016/j.ecolind.2012.02.013 CrossRefGoogle Scholar
  121. Tomscha SA, Sutherland IJ, Renard D, Gergel SE, Rhemtulla JM, Bennett EM, Daniels LD, Eddy IM, Clark EE (2016) A guide to historical data sets for reconstructing ecosystem services over time. Bioscience XX:1–16. doi: 10.1093/biosci/biw086
  122. Turner MG, Donato DC, Romme WH (2012) Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc Ecol 28:1081–1097. doi: 10.1007/s10980-012-9741-4 CrossRefGoogle Scholar
  123. UNEP (2010) Global Environment Outlook: Latin America and the Caribbean—GEO LAC 3. PanamaGoogle Scholar
  124. Veblen TT, Schlegel FM, Oltremari JV (1983) Temperate broad-leaved evergreen forests of South America. In: O JD (ed) Temperate broad-leaved evergreen forests. Elsevier, Amsterdam, pp 5–31Google Scholar
  125. Volk M (2014) Modelling ecosystem services—challenges and promising future directions. Sustain Water Qual Ecol. doi: 10.1016/j.swaqe.2014.05.003
  126. Walz U, Stein C (2014) Indicators of hemeroby for land use monitoring in Germany. J Nat Conserv 22:279–289CrossRefGoogle Scholar
  127. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. Agric Handb No 537:285–291. doi: 10.1029/TR039i002p00285 Google Scholar
  128. Zamorano-Elgueta C, Rey Benayas JM, Cayuela L, Hantson S, Armenteras D (2015) Native forest replacement by exotic plantations in southern Chile (1985–2011) and partial compensation by natural regeneration. For Ecol Manag 345:10–20. doi: 10.1016/j.foreco.2015.02.025
  129. Zhu Z, Woodcock CE, Olofsson P (2012) Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens Environ 122:75–91. doi: 10.1016/j.rse.2011.10.030 CrossRefGoogle Scholar
  130. Zomer RJ, Trabucco A, Straaten O Van, Bossio DA (2007) Carbon, land and water: a global analysis of the hydrologic dimensions of climate change mitigation through afforestation/reforestation. ColomboGoogle Scholar
  131. Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80. doi: 10.1016/j.agee.2008.01.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Karla E. Locher-Krause
    • 1
    Email author
  • Sven Lautenbach
    • 1
    • 2
  • Martin Volk
    • 1
  1. 1.Department of Computational Landscape EcologyUFZ—Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Land Use Modeling and Ecosystem Services, Agricultural FacultyUniversity BonnBonnGermany

Personalised recommendations