Advertisement

Regional Environmental Change

, Volume 17, Issue 6, pp 1623–1638 | Cite as

Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups

  • Katharina Waha
  • Linda Krummenauer
  • Sophie Adams
  • Valentin Aich
  • Florent Baarsch
  • Dim Coumou
  • Marianela Fader
  • Holger Hoff
  • Guy Jobbins
  • Rachel Marcus
  • Matthias Mengel
  • Ilona M. Otto
  • Mahé Perrette
  • Marcia Rocha
  • Alexander Robinson
  • Carl-Friedrich Schleussner
Original Article

Abstract

The Middle East and North Africa (MENA) region emerges as one of the hot spots for worsening extreme heat, drought and aridity conditions under climate change. A synthesis of peer-reviewed literature from 2010 to date and own modeling work on biophysical impacts of climate change on selected sectors shows that the region is highly affected by present and future climate change. These biophysical impacts paired with other pressures and a lack of resilience in some countries cause high vulnerabilities within these sectors and for social dimensions in the MENA region. The agricultural sector, of which 70 percent is rain-fed, is highly exposed to changing climatic conditions. This is of critical importance as the agriculture sector is the largest employer in many Arab countries and contributes significantly to national economies. Impacts will be high in a 2 °C world, as, e.g., annual water discharge, already critically low, is projected to drop by another 15–45% (75% in a 4 °C world) and unusual heat extremes projected to affect about one-third of the land area with likely consequences for local food production. As a consequence, deteriorating rural livelihoods associated with declining agricultural productivity will continue to contribute to migration flows, often to urban areas as already observed. The region could be heavily challenged by both rising food and water demand given its projected increase in population that may double by 2070. As a result, the regions already substantial import dependency could increase and thus its vulnerability to agricultural impacts well beyond its country borders. A severe and sustained pressure on resources could contribute to further social unrest in the already unstable political environment that currently characterizes parts of the region. While the particular societal responses to such changes are hard to foresee, it is clear that extreme impacts would constitute unprecedented challenges to the social systems affected.

Keywords

Regional climate change Rain-fed agriculture Water scarcity Migration Heat extremes Aridity Health 

Notes

Acknowledgements

The contribution of M. Fader was supported by the Labex OT-Med (no ANR-11-LABX-0061) and the A*MIDEX project (no ANR-11-IDEX-0001-02). This research has been partly funded by the World Bank.

Supplementary material

10113_2017_1144_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1: Additional figures for temperature and precipitation projections (PDF 1336 kb)
10113_2017_1144_MOESM2_ESM.pdf (539 kb)
Supplementary material 2: Regional Topology (PDF 538 kb)
10113_2017_1144_MOESM3_ESM.pdf (549 kb)
Supplementary material 3: Methods for Meta-Analysis (PDF 548 kb)
10113_2017_1144_MOESM4_ESM.pdf (515 kb)
Supplementary material 4: Synthesis Table (PDF 514 kb)

References

  1. Aguirre-Salado CA, Treviño-Garza EJ, Aguirre-Calderón OA, Jiménez-Pérez J, González-Tagle MA, Valdez-Lazalde JR (2012) Desertification-climate change interactions: México’s battle against desertification. In: Mahamane A (ed) Diversity of Ecosystems. InTech, Rijeka. doi: 10.5772/36762
  2. Akbari S (2011) Dust storms, sources in the Middle East and economic model for survey its impacts. Aust J Basic Appl Sci 5(12):227–233Google Scholar
  3. Al-Bakri J, Suleiman A, Abdulla F, Ayad J (2011) Potential impact of climate change on rainfed agriculture of a semi-arid basin in Jordan. Phys Chem Earth Parts A/B/C 36(5–6):125–134. doi: 10.1016/j.pce.2010.06.001 CrossRefGoogle Scholar
  4. Al-Riffai P, Breisinger C (2012) Droughts in Syria: an assessment of impacts and options for improving the resilience of the poor. Quarterly J Int Agric 51(1):21–49Google Scholar
  5. Bardsley DK, Hugo GJ (2010) Migration and climate change: examining thresholds of change to guide effective adaptation decision-making. Popul Environ 32(2–3):238–262. doi: 10.1007/s11111-010-0126-9 CrossRefGoogle Scholar
  6. Belaroui K, Djediai H, Megdad H (2013) The influence of soil, hydrology, vegetation and climate on desertification in El-Bayadh region (Algeria). Desalination and Water Treat. doi: 10.1080/19443994.2013.782571 Google Scholar
  7. Ben-Ahmed K, Aoun K, Jeddi F, Ghrab J, El-Aroui M-A, Bouratbine A (2009) Visceral leishmaniasis in Tunisia: spatial distribution and association with climatic factors. Am J Trop Med Hyg 81(1):40–45Google Scholar
  8. Bigio A (2011) North African coastal cities. Address natural disasters and climate change. Climate Change adaptation and natural disaster preparedness in the coastal cities of North Africa. Summary of the Regional Study. p 28. WashingtonGoogle Scholar
  9. Black R, Adger WN, Arnell NW, Dercon S, Geddes A, Thomas DSG (2011a) The effect of environmental change on human migration. Global Environ Change 21:3–11. doi: 10.1016/j.gloenvcha.2011.10.001 CrossRefGoogle Scholar
  10. Black R, Bennett SRG, Thomas SM, Beddington JR (2011b) Climate change: migration as adaptation. Nature 478(7370):447–449. doi: 10.1038/478477a CrossRefGoogle Scholar
  11. Bozkurt D, Sen OL (2013) Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. J Hydrol 480:149–161. doi: 10.1016/j.jhydrol.2012.12.021 CrossRefGoogle Scholar
  12. Brecht H, Dasgupta S, Laplante B, Murray S, Wheeler D (2012) Sea-level rise and storm surges: high stakes for a small number of developing countries. J Environ Dev 21(1):120–138. doi: 10.1177/1070496511433601 CrossRefGoogle Scholar
  13. Brown S, Kebede AS, Nicholls RJ (2009) Sea level rise and impacts in africa, 2000–2100. Unpublished Report to Stockholm Environment Institute, OxfordGoogle Scholar
  14. Brücker P, Bougnoux N, Wodon Q (2012) Policy brief en Afrique du Nord. Climate 13:1–4Google Scholar
  15. Buhaug H (2010) Climate not to blame for African civil wars. Proc Natl Acad Sci USA 107(38):16477–16482. doi: 10.1073/pnas.1005739107 CrossRefGoogle Scholar
  16. Burke MB, Miguel E, Satyanath S, Dykema JA, Lobell DB (2009) Warming increases the risk of civil war in Africa. Proc Natl Acad Sci 106(49):20670–20674. doi: 10.1073/pnas.0907998106 CrossRefGoogle Scholar
  17. Burkett VR, Suarez AG, Bindi M, Conde C, Mukerji R, Prather MJ, Yohe GW (2014) Point of departure. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, pp 169–194. Cambridge: Cambridge University PressGoogle Scholar
  18. Center for Naval Analysis (2007) National Security and the Threat of Climate Change. AlexandriaGoogle Scholar
  19. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8(3):034018CrossRefGoogle Scholar
  20. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58. doi: 10.1038/nclimate1633 CrossRefGoogle Scholar
  21. Dasgupta S, Laplante B, Meisner C, Wheeler D, Yan J (2009) The impact of sea level rise on developing countries: a comparative analysis. Clim Change 93(3–4):379–388. doi: 10.1007/s10584-008-9499-5 CrossRefGoogle Scholar
  22. Dasgupta S, Laplante B, Murray S, Wheeler D (2011) Exposure of developing countries to sea-level rise and storm surges. Clim Change 106(4):567–579. doi: 10.1007/s10584-010-9959-6 CrossRefGoogle Scholar
  23. Dixon JA, Gibbon DP, Gulliver A (2001) Farming systems and poverty: improving farmers´ livelihoods in a changing world. (M. Hall, Ed.) (p. 412). Rome, Washington: FAO and World BankGoogle Scholar
  24. Donat MG, Peterson TC, Brunet M, King AD, Almazroui M, Kolli RK, Boucherf D, Al-Mulla AY, Nour AY, Aly AA, Nada TA (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol 34(3):581–592. doi: 10.1002/joc.3707 CrossRefGoogle Scholar
  25. Drine I (2011) WIDER Working Paper No. 2011/32 Climate Change Compounding Risks in North AfricaGoogle Scholar
  26. Evans JP (2009) Twenty-first century climate change in the Middle East. Clim Change 92(3–4):417–432. doi: 10.1007/s10584-008-9438-5 CrossRefGoogle Scholar
  27. Fader M, Gerten D, Krause M, Lucht W, Cramer W (2013) Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environ Res Lett 8(1):014046. doi: 10.1088/1748-9326/8/1/014046 CrossRefGoogle Scholar
  28. FAO (2013a) Aquastat online database. Retrieved March 17, 2014, from http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
  29. FAO (2013b) The state of food insecurity in the world. the multiple dimensions of food security, p 52. Rome, Italy: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/docrep/018/i3434e/i3434e00.htm
  30. Ferrise R, Moriondo M, Trombi G, Miglietta F, Bindi M (2013) Climate change impacts on typical mediterranean crops and evaluation of adaptation strategies to cope with. In: Navarra A, Tubiana L (eds) regional assessment of climate change in the mediterranean. Springer, Berlin. pp 49–70Google Scholar
  31. Frihy OE, El-Sayed MK (2013) Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt. Mitig Adapt Strat Glob Change 18(8):1215–1237. doi: 10.1007/s11027-012-9418-y CrossRefGoogle Scholar
  32. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105(3):121–139. doi: 10.1016/j.earscirev.2011.01.006 CrossRefGoogle Scholar
  33. Gemenne F (2011a) Climate-induced population displacements in a 4°C + world. Phil Trans Ser A Math Phys Eng Sci 369(1934):182–195. doi: 10.1098/rsta.2010.0287 CrossRefGoogle Scholar
  34. Gemenne F (2011b) Why the numbers don’t add up: a review of estimates and predictions of people displaced by environmental changes. Glob Environ Change 21:S41–S49. doi: 10.1016/j.gloenvcha.2011.09.005 CrossRefGoogle Scholar
  35. Gemenne F (2013) Migration doesn’t have to be a failure to adapt. An escape from environmental determinism. In: Palutikof J, Boulter SL, Ash AJ, Smith MS, Parry M, Waschka M, Guitart D (eds) Climate adaptation futures. Wiley, Hoboken. doi: 10.1002/9781118529577.ch22
  36. Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011) Global water availability and requirements for future food production. J Hydrometeorol 12(5):885–899. doi: 10.1175/2011JHM1328.1 CrossRefGoogle Scholar
  37. Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 and C global warming. Global Planet Change 68(3):209–224. doi: 10.1016/j.gloplacha.2009.06.001 CrossRefGoogle Scholar
  38. Goudie AS (2009) Dust storms: recent developments. J Environ Manag 90(1):89–94. Retrieved from http://www.sciencedirect.com/science/article/pii/S0301479708001990
  39. Gubert F, Nordman CJ (2010) Migration trends in North Africa focus on Morocco, Tunisia and Algeria. OECD J: General Papers, 4/2009Google Scholar
  40. Habib RR, El Zein K, Ghanawi J (2010) Climate change and health research in the Eastern Mediterranean region. EcoHealth 7:156–175CrossRefGoogle Scholar
  41. Han W, Meehl GA, Rajagopalan B, Fasullo JT, Hu A, Lin J, Large WG, Wang JW, Quan XW, Trenary LL, Wallcraft A, Yeager S (2010) Patterns of Indian ocean sea-level change in a warming climate. Nature Geosci 3(8):546–550. Retrieved from http://dx.doi.org/10.1038/ngeo901
  42. Hsiang SM, Meng KC (2014) Reconciling disagreement over climate-conflict results in Africa. Proc Natl Acad Sci 1:2–5. doi: 10.1073/pnas.1316006111 Google Scholar
  43. Hsiang SM, Burke M, Miguel E (2013) Quantifying the influence of climate on human conflict. Science 341(6151):1235367. doi: 10.1126/science.1235367 CrossRefGoogle Scholar
  44. Hugo G (2011) Future demographic change and its interactions with migration and climate change. Glob Environ Change 21:S21–S33. doi: 10.1016/j.gloenvcha.2011.09.008 CrossRefGoogle Scholar
  45. Hunt A, Watkiss P (2011) Climate change impacts and adaptation in cities: a review of the literature. Clim Change 104(1):13–49. doi: 10.1007/s10584-010-9975-6 CrossRefGoogle Scholar
  46. Immerzeel W, Droogers P, Terink W, Hoogeveen J, Hellegers P, Bierkens M, van Beek R (2011) Middle East and North Africa Water Outlook, p 120. Wageningen, Netherlands. Retrieved from http://www.futurewater.nl/uk/projects/mena/
  47. International Trachoma Initiative (2016) Global Atlas of Trachoma. Retrieved from http://www.trachomaatlas.org/
  48. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation (SREX). In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge: Cambridge University PressGoogle Scholar
  49. Kerrou J, Renard P, Tarhouni J (2010) Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion. Hydrogeol J 18(5):1173–1190. doi: 10.1007/s10040-010-0573-5 CrossRefGoogle Scholar
  50. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357. doi: 10.1007/s10584-013-0705-8 CrossRefGoogle Scholar
  51. Khormi HM, Kumar L (2014) Climate change and the potential global distribution of Aedes aegypti: spatial modelling using geographical information system and CLIMEX. Geospatial Health 8(2):405–415. doi: 10.4081/gh.2014.29 CrossRefGoogle Scholar
  52. Kjellstrom T, McMichael A (2013) Climate change threats to population health and well-being: the imperative of protective solutions that will last. Global Health Action, 6(20816). doi: 10.3402/gha.v6i0.20816
  53. Kjellstrom T, Kovats RS, Lloyd SJ, Holt T, Tol RSJ (2009) The direct impact of climate change on regional labor productivity. Arch Environ Occup Health 64(4):217–227CrossRefGoogle Scholar
  54. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nature Geosci 3(3):157–163. doi: 10.1038/ngeo779 CrossRefGoogle Scholar
  55. Kouzana L, Ben A, Sfar M (2009) Seawater intrusion and associated processes: case of the Korba aquifer (Cap-Bon, Tunisia). CR Geosci 341(1):21–35. doi: 10.1016/j.crte.2008.09.008 CrossRefGoogle Scholar
  56. Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkeş M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37(4):5. doi: 10.1029/2009GL041841 CrossRefGoogle Scholar
  57. Kumar A (2013) Natural hazards of the Arabian Peninsula: their causes and possible remediation. In: Sinha R, Ravindra R (eds) Earth system processes and disaster management (Society of, pp 155–180). Springer, Heidelberg. doi: 10.1007/978-3-642-28845-6
  58. Kumetat D (2012) Climate change on the arabian peninsula—regional security, sustainability strategies, and research needs. In: Scheffran J, Brozka M, Brauch HG, Link M, Schilling J (eds) Climate change, human security and violent conflict. Challenges for social stability, pp 373–386. Berlin: SpringerGoogle Scholar
  59. Laczko F, Piguet E (2014) Regional perspectives on migration, the environment and climate change. In: Laczko F, Piguet E (eds) People on the move in a changing climate. the regional impact of environmental change on migration. Global migration issues 2, pp 1–20. Dordrecht: Springer NetherlandsGoogle Scholar
  60. Landerer FW, Volkov DL (2013) The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys Res Lett 40(3):553–557. doi: 10.1002/grl.50140 CrossRefGoogle Scholar
  61. Leichenko R, Silva JA (2014) Climate change and poverty: vulnerability, impacts, and alleviation strategies. doi: 10.1002/wcc.287
  62. Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Change 114(3–4):667–687. doi: 10.1007/s10584-012-0418-4 CrossRefGoogle Scholar
  63. Lelieveld J, Barlas C, Giannadaki D, Pozzer A (2013a) Model calculated global, regional and megacity premature mortality due to air pollution. Atmos Chem Phys 13:7023–7037. doi: 10.5194/acp-13-7023-2013 CrossRefGoogle Scholar
  64. Lelieveld J, Hadjinicolaou P, Kostopoulou E, Giannakopoulos C, Pozzer A, Tanarhte M, Tyrlis E (2013b) Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Reg Environ Change 14:1937–1949. doi: 10.1007/s10113-013-0444-4 CrossRefGoogle Scholar
  65. Luecke M (2011) Climate migration: A strategy to adapt to climate change or a failure to adapt? In: Trofimenko N (ed) Climate Change: Current Issues. Kiel Institute for the World Economy (IfW), Kiel, pp 8–9Google Scholar
  66. Marcos M, Tsimplis MN (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the twenty-first century. J Geophys Res 113(C12):C12028. doi: 10.1029/2008JC004820 CrossRefGoogle Scholar
  67. Marcus R, Pereznieto P, Cullen E, Jones N (2011) Children and social protection in the Middle East and North Africa. A mapping exercise. (No. ODI Working Paper 335). London, UKGoogle Scholar
  68. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University PressGoogle Scholar
  69. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  70. Mougou R, Mansour M, Iglesias A, Chebbi RZ, Battaglini A (2010) Climate change and agricultural vulnerability: a case study of rain-fed wheat in Kairouan, Central Tunisia. Reg Environ Change 11(S1):137–142. doi: 10.1007/s10113-010-0179-4 CrossRefGoogle Scholar
  71. Novikov I, Kalter-Leibovici O, Chetrit A, Stav N, Epstein Y (2012) Weather conditions and visits to the medical wing of emergency rooms in a metropolitan area during the warm season in Israel: a predictive model. Int J Biometeorol 56:121–127. doi: 10.1007/s00484-011-0403-z CrossRefGoogle Scholar
  72. Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17(5):1765–1781. doi: 10.5194/hess-17-1765-2013 CrossRefGoogle Scholar
  73. Portier CJ, Thigpen Tart K, Carter SR, Dilworth CH, Grambsch AE, Gohlke J, Scheraga J, Schramm PJ, Strickman D, Trtanj JM, Whung P-Y (2010) A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change, p 80. Research Triangle Park: NC:Environmental Health Perspectives/National Institute of Environmental Health Science. doi:doi: 10.1289/ehp.100227
  74. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete BM, Franssen W, Gerten D, Gosling SN, Hagemann S (2014) Hydrological droughts in the twenty-first century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci 111(9):3262–3267. doi: 10.1073/pnas.1222473110 CrossRefGoogle Scholar
  75. Salehi M, Mohammad K, Farahani MM, Zeraati H, Nourijelyani K, Zayeri F (2008) Spatial modeling of malaria incidence rates in Sistan and Baluchistan province, Islamic Republic of Iran. Saud Med J 29(2):1791–1796Google Scholar
  76. Satterthwaite D, Huq S, Reid H, Pelling M, Lankao PR (2007) Adapting to climate change in urban areas: the possibilities and constraints in low and middle income nations. IIED, LondonGoogle Scholar
  77. Scheffran J, Schilling J, Link MP (2012) Theories and models of climate-security interaction: framework and application to a climate hot spot in North Africa. In: Scheffran J, Brzoska M, Brauch HG, Link PM, Schilling J (eds) Climate change, human security and violent conflict. Challenges for social stability, pp 91–131. Berlin: SpringerGoogle Scholar
  78. Scheiter S, Higgins S (2009) Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Global Change Biol 15(9):2224–2246. doi: 10.1111/j.1365-2486.2008.01838.x CrossRefGoogle Scholar
  79. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111(9):3245–3250. doi: 10.1073/pnas.1222460110 CrossRefGoogle Scholar
  80. Schilling J, Freier K, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric Ecosyst Environ 156:12–26. doi: 10.1016/j.agee.2012.04.021 CrossRefGoogle Scholar
  81. Selvaraju R (2013) Implications of climate change for agriculture and food security in the Western Asia and Northern Africa region. In: Sivakumar MVK, Lal R, Selvaraju R, Hamdan I (eds) Climate change and food security in West Asia and North Africa. Springer, Dordrecht, pp 27–51CrossRefGoogle Scholar
  82. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Midgley PM, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). (pp. 109–230). Cambridge: Cambridge University PressGoogle Scholar
  83. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118(6):2473–2493. doi: 10.1002/jgrd.50188
  84. Slater H, Michael E (2012) Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS ONE 7(2):e32202. doi: 10.1371/journal.pone.0032202 CrossRefGoogle Scholar
  85. Smith KR, Woodward A, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q, Olwoch JM, Revich B, Sauerborn R (2014) Human health: impacts, adaptation, and co-benefits. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TD, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, pp 709–754. Cambridge: Cambridge University PressGoogle Scholar
  86. Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the twentieth century in the Mediterranean. Nat Hazards Earth Syst Sci 11(1):33–51. doi: 10.5194/nhess-11-33-2011 CrossRefGoogle Scholar
  87. Sowers J, Vengosh A, Weinthal E (2011) Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim Change 104(3–4):599–627. doi: 10.1007/s10584-010-9835-4 CrossRefGoogle Scholar
  88. Sternberg T (2012) Chinese drought, bread and the Arab Spring. Appl Geogr 34:519–524. doi: 10.1016/j.apgeog.2012.02.004 CrossRefGoogle Scholar
  89. Tacoli C (2009) Crisis or adaptation? Migration and climate change in a context of high mobility. Environ Urban 21(2):513–525. doi: 10.1177/0956247809342182 CrossRefGoogle Scholar
  90. Thornton PK, van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101(3):113–127. doi: 10.1016/j.agsy.2009.05.002 CrossRefGoogle Scholar
  91. Toumi A, Chlif S, Bettaieb J, Ben Alaya N, Boukthir A, Ahmadi ZE, Ben Salah A (2012) Temporal dynamics and impact of climate factors on the incidence of zoonotic cutaneous leishmaniasis in central tunisia. PLoS Negl Trop Dis 6(5):e1633. doi: 10.1371/journal.pntd.0001633 CrossRefGoogle Scholar
  92. Trenberth K, Dai A (2014) Global warming and changes in drought. Nature Clim Change 4(January):3–8. doi: 10.1038/NCLIMATE2067 Google Scholar
  93. Tsimplis MN, Baker TF (2000) Sea level drop in the Mediterranean Sea: an indicator of deep water salinity and temperature changes? Geophys Res Lett 27(12):1731–1734. doi: 10.1029/1999GL007004 CrossRefGoogle Scholar
  94. Tsimplis MN, Calafat FM, Marcos M, Jordá G, Gomis D, Fenoglio-Marc L, Struglia MV, Josey SA, Chambers DP (2013) The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J Geophys Res Oceans 118(2):944–952. doi: 10.1002/JGRC.20078 CrossRefGoogle Scholar
  95. Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: dynamics of the active Red Sea Trough. J Geophys Res Atmos 118(13):7087–7108. doi: 10.1002/jgrd.50569 CrossRefGoogle Scholar
  96. United Nations (2013) World population prospects. The 2012 revision. vol I: Comprehensive tables. New YorkGoogle Scholar
  97. Unnikrishnan AS, Shankar D (2007) Are sea-level-rise trends along the coasts of the north Indian Ocean consistent with global estimates? Global Planet Change 57:301–307. doi: 10.1016/j.gloplacha.2006.11.029 CrossRefGoogle Scholar
  98. Van Lieshout M, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob Environ Change 14(1):87–99. doi: 10.1016/j.gloenvcha.2003.10.009 CrossRefGoogle Scholar
  99. Verner D (2012) Adaptation to a changing climate in the Arab countries: a case for adaptation governance and leadership in building climate resilience. Washington D.C.: MENA Development Report, World BankGoogle Scholar
  100. Verstraete MM, Scholes RJ, Smith MS (2009) Climate and desertification: looking at an old problem through new lenses. Front Ecol Environ 7(8):421–428. doi: 10.1890/080119 CrossRefGoogle Scholar
  101. Warner K, Hamza MA, Oliver-Smith A, Renaud F, Julca A (2010) Climate change, environmental degradation and migration. Nat Hazards 55:689–715. doi: 10.1007/s11069-009-9419-7 CrossRefGoogle Scholar
  102. Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204. doi: 10.1111/j.1745-6584.2008.00535.x CrossRefGoogle Scholar
  103. WHO and EMRO (2009) The work of WHO in the Eastern Mediterranean Region: annual report of the regional director 1 January–31 December 2008. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  104. Wodon Q, Burger N, Grant A, Joseph G, Liverani A, Olesya T (2014) Climate change, extreme weather events, and migration: review of the literature for five Arab countries. In: Piguet E, Laczko F (eds) People on the move in a changing climate. The Regional Impact of Environmental Change on Migration. Global Migration Issues 2 (pp 111–134). Dordrecht: International Organization of Migration, SpringerGoogle Scholar
  105. Wöppelmann G, Le Cozannet G, Michele M, Raucoules D, Cazenave A, Garcin M, Hanson S, Marcos M, Santamaría-Gómez A (2013) Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? Geophys Res Lett 40(12):2953–2957. doi: 10.1002/grl.50568 CrossRefGoogle Scholar
  106. World Bank (2011) North African coastal cities: address natural disasters and climate change—summary of the regional study, p 28. Washington D.CGoogle Scholar
  107. World Bank (2013a) Access to electricity (% of population). Retrieved 11 Dec 2013, from http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
  108. World Bank (2013b) Electric power consumption (kWh per capita). Retrieved 11 Dec 2013, from http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC
  109. World Bank (2014) Turn down the heat: confronting the new climate normal. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics, p 275. Washington D.CGoogle Scholar
  110. World Bank (2016) World development indicators. Retrieved 21 Sept 2016, from http://data.worldbank.org/indicator
  111. Yechieli Y, Shalev E, Wollman S, Kiro Y, Kafri U (2010) Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations. Water Resour Res 46(12):1–11. doi: 10.1029/2009WR008708 CrossRefGoogle Scholar

Copyright information

© International Bank for Reconstruction and Development/The World Bank 2017 2017

Authors and Affiliations

  • Katharina Waha
    • 1
    • 2
  • Linda Krummenauer
    • 1
  • Sophie Adams
    • 3
    • 6
  • Valentin Aich
    • 1
  • Florent Baarsch
    • 1
    • 3
    • 11
  • Dim Coumou
    • 1
  • Marianela Fader
    • 5
  • Holger Hoff
    • 1
    • 9
  • Guy Jobbins
    • 4
  • Rachel Marcus
    • 4
  • Matthias Mengel
    • 1
  • Ilona M. Otto
    • 1
    • 10
  • Mahé Perrette
    • 1
  • Marcia Rocha
    • 3
  • Alexander Robinson
    • 1
    • 7
    • 8
  • Carl-Friedrich Schleussner
    • 1
    • 3
  1. 1.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.CSIRO Agriculture and FoodSt.LuciaAustralia
  3. 3.Climate AnalyticsBerlinGermany
  4. 4.Overseas Development Institute (ODI)LondonUK
  5. 5.International Centre for Water Resources and Global Change (UNESCO), Federal Institute of HydrologyKoblenzGermany
  6. 6.University of New South WalesKensingtonAustralia
  7. 7.Universidad Complutense de MadridMadridSpain
  8. 8.Instituto de Geociencias, CSIC-UCMMadridSpain
  9. 9.Stockholm Environment InstituteStockholmSweden
  10. 10.School of Public AffairsZhejiang UniversityHangzhouChina
  11. 11.Center for Economic StudiesLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations