Regional Environmental Change

, Volume 18, Issue 4, pp 995–1008 | Cite as

Spanish agriculture from 1900 to 2008: a long-term perspective on agroecosystem energy from an agroecological approach

  • Gloria I. Guzmán
  • Manuel González de Molina
  • David Soto Fernández
  • Juan Infante-Amate
  • Eduardo Aguilera
Original Article

Abstract

According to the agroecological approach, energy analyses applied to agriculture should provide information about the structure and functions of the agroecosystem; in other words, about the maintenance of its fund elements, which sustain the flow of ecosystem services. To this end, we have employed a methodological proposal that adds agroecological EROIs to the existing economic EROIs. This methodology is applied here for the first time at the country level, and over a long-term historical period. The Spanish agroforestry sector, which is representative of Mediterranean agroclimatic conditions, has been studied on a decadal basis from 1900 to 2008, fully spanning its process of industrialization and modernization. The results show the loss of energy efficiency brought about by the industrialization of Spanish agriculture. The economic EROIs (FEROI, EFEROI and IFEROI) fell by 42, 93 and 12%, respectively. The shift towards livestock production and the dramatic increase in industrial inputs are the causes of this decline. With regard to agroecological EROIs, NPPact EROI and Biodiversity EROI fell by 6 and 15%, respectively. This suggests that the fund elements are being degraded and alerts us to low returns to nature in the form of un-harvested biomass available to aboveground and underground wildlife. Finally, Woodening EROI increased by 48%. Sixty percentage of this increment was due to the growth of woodland in areas freed from agricultural activities. However, this change in land use was partly due to feed imports from third countries where deforestation processes may well be taking place, an effect that has not been considered in the analysis.

Keywords

Social metabolism Ecosystem services Land sharing Land sparing Land use change EROI 

Notes

Acknowledgements

This work springs from the international research project on Sustainable Farm Systems: Long-Term Socio-Ecological Metabolism in Western Agriculture funded by the Social Sciences and Humanities Research Council of Canada (SSHRC 895-2011-1020) and Spanish research project HAR2012-38920-C02-01 funded by Ministerio de Economía y Competitividad (Spain).

Supplementary material

10113_2017_1136_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 22 kb)

References

  1. Aguilera E, Guzmán GI, Infante-Amate J, Soto D, García-Ruiz R, Cid A, Herrera A, Villa I, Torremocha E, Carranza G, González de Molina M (2015) Embodied energy in agricultural inputs. Incorporating a historical perspective. Sociedad Española de Historia Agraria. DT-SEHA 1507. www.seha.info
  2. Alexandratos N (2006) The Mediterranean diet in a world context. Public Health Nutr 9:111–117. doi: 10.1079/PHN2005932 CrossRefGoogle Scholar
  3. Almoguera Millán J (2007) Modelo dehesa sobre las relaciones pastizal-encinar-ganado. Trabajo Fin de Carrera. Universidad Politécnica de Madrid, MadridGoogle Scholar
  4. Barral MP, Rey Benayas JM, Meli P, Maceira NO (2015) Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agric Ecosyst Environ 202:223–231. doi: 10.1016/j.agee.2015.01.009 CrossRefGoogle Scholar
  5. Bartolomé Rodríguez I (2007) La industria eléctrica en España (1890–1936), vol 50. Banco de España, EurosistemaGoogle Scholar
  6. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188. doi: 10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  7. Berlin D, Uhlin H-E (2004) Opportunity cost principles for life cycle assessment: toward strategic decision making in agriculture. Prog Ind Ecol 1:187–202. doi: 10.1504/PIE.2004.004678 CrossRefGoogle Scholar
  8. Burkhard B, Fath BD, Müller F (2011) Adapting the adaptive cycle: hypotheses on the development of ecosystem properties and services. Ecol Model 222:2878–2890. doi: 10.1016/j.ecolmodel.2011.05.016 CrossRefGoogle Scholar
  9. Carpintero O, Naredo JM (2006) Sobre la evolución de los balances energéticos de la agricultura española, 1950–2000. Hist Agrar 40:531–554Google Scholar
  10. Carreras A, Tafunell X (eds) (2005) Estadísticas históricas de España siglos XIX–XX. Fundación BBVA, MadridGoogle Scholar
  11. CIFA (Centro de Investigación y Formación Agrarias de Cantabria) (2007) Los pastos de Cantabria y su aprovechamiento, Producción y calidad: Anexo II. Consejería de Desarrollo Rural, Ganadería, Pesca y Biodiversidad, SantanderGoogle Scholar
  12. CMAOT (Consejería de Medio Ambiente y Ordenación del Territorio de Andalucía) (2014) Biomasa Forestal de Andalucía. http://www.juntadeandalucia.es/medioambiente/bioforan/plantillas/biomasa/index.html?especie=halepensis. Accessed 22 Oct 2014
  13. Cornell S (2010) Valuing ecosystem benefits in a dynamic world. Clim Res 45:261–272. doi: 10.3354/cr00843 CrossRefGoogle Scholar
  14. Corominas J (2010) Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del Agua 17(3):219–233. doi: 10.4995/ia.2010.2977 CrossRefGoogle Scholar
  15. Correal E, Robledo A, Erena M (coords.) (2007) Tipificación, cartografía y evaluación de los recursos de la Región de Murcia. Informe 18. Consejería de Agricultura, MurciaGoogle Scholar
  16. Costanza R (2012) Ecosystem health and ecological engineering. Ecol Eng 45:24–29. doi: 10.1016/j.ecoleng.2012.03.023 CrossRefGoogle Scholar
  17. Döring TF, Kromp B (2003) Which carabid species benefit from organic agriculture?—a review of comparative studies in winter cereals from Germany and Switzerland. Agric Ecosyst Environ 98:153–161. doi: 10.1016/S0167-8809(03)00077-X CrossRefGoogle Scholar
  18. European Commission (2013) Report from the commission to the council and the European parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2008–2011. Brussels, 4-10-2013Google Scholar
  19. FAO (2015) FAOSTAT—FAO database for food and agriculture, food and agriculture organisation of United Nations (FAO). Rome. http://faostat3.fao.org/. Accessed 15 Jan 2015
  20. Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Phil Trans. R Soc. B 363:777–787. doi: 10.1098/rstb.2007.2183 CrossRefGoogle Scholar
  21. Fluck RC (1992) Chapter 3—Energy of human labor. In: Fluck RC (ed) Energy in farm production. Elsevier, Amsterdam, pp 31–37CrossRefGoogle Scholar
  22. Folke C, Jansson Å, Rockström J, Olsson P, Carpenter SR, Chapin FS, Crépin A-S, Daily G, Danell K, Ebbesson J, Elmqvist T, Galaz V, Moberg F, Nilsson M, Österblom H, Ostrom E, Persson Å, Peterson G, Polasky S, Steffen W, Walker B, Westley F (2011) Reconnecting to the biosphere. AMBIO J Hum Environ 40:719–738. doi: 10.1007/s13280-011-0184-y CrossRefGoogle Scholar
  23. Gabriel D, Sait SM, Kunin WE, Benton TG (2013) Food production versus biodiversity: comparing organic and conventional agriculture. J Appl Ecol 50:355–364. doi: 10.1111/1365-2664.12035 CrossRefGoogle Scholar
  24. Gallego Martínez D (1986) La producción agraria de Álava, Navarra y La Rioja desde mediados del siglo XIX a 1935. PhD Dissertation. Universidad Complutense de Madrid, MadridGoogle Scholar
  25. Garrido (coord.) A (2012) Indicadores de sostenibilidad de la agricultura y ganadería españolas. Fundación Cajamar, AlmeríaGoogle Scholar
  26. Gasparri NI, Grau HR, Gutiérrez Angonese J (2013) Linkages between soybean and neotropical deforestation: coupling and transient decoupling dynamics in a multi-decadal analysis. Global Environ Change 23:1605–1614. doi: 10.1016/j.gloenvcha.2013.09.007 CrossRefGoogle Scholar
  27. GEHR (1991) Estadísticas Históricas de la producción agraria española, 1859–1935. MAPA, MadridGoogle Scholar
  28. Georgescu-Roegen N (1971) The entropy law and the economic process. Harvard University Press, CambridgeCrossRefGoogle Scholar
  29. Giampietro M, Mayumi K, Sorman AH (2010) Assessing the quality of alternative energy sources: energy return on the investment (EROI), the metabolic pattern of societies and energy statistics. working papers on environmental sciences. ICTA, BarcelonaGoogle Scholar
  30. Gliessman SR (1998) Agroecology. Ecological Processes in Sustainable Agriculture. Ann Arbor Press, ChelseaGoogle Scholar
  31. Gómez JA, Giráldez JV (2008) Erosión y degradación de suelos. Consejería de Agricultura y Pesca (Junta de Andalucía), SevillaGoogle Scholar
  32. González de Molina M, Guzmán Casado GI (2006) Tras los pasos de la insustentabilidad, Agricultura y Medio ambiente en perspectiva histórica (siglos XVIII-XX). ICARIA, BarcelonaGoogle Scholar
  33. Guzmán GI, Alonso AM (2008) A comparison of energy use in conventional and organic olive oil production in Spain. Agric Syst 98:167–176. doi: 10.1016/j.agsy.2008.06.004 CrossRefGoogle Scholar
  34. Guzmán GI, González de Molina M (2009) Preindustrial agriculture versus organic agriculture. The land cost of sustainability. Land Use Policy 26:502–510. doi: 10.1016/j.landusepol.2008.07.004 CrossRefGoogle Scholar
  35. Guzmán GI, González de Molina M (2015) Energy efficiency in agrarian systems from an agro-ecological perspective. Agroecol Sustain Food Syst 39:924–952. doi: 10.1080/21683565.2015.1053587 CrossRefGoogle Scholar
  36. Guzmán GI, González de Molina M, Sevilla Guzmán E (1999) Introducción a la Agroecología como desarrollo rural sostenible. Mundi-Prensa, MadridGoogle Scholar
  37. Guzmán GI, González de Molina M, Alonso AM (2011) The land cost of agrarian sustainability. An assessment. Land Use Policy 28:825–835. doi: 10.1016/j.landusepol.2011.01.010 CrossRefGoogle Scholar
  38. Guzmán GI, Aguilera E, Soto D, Cid A, Infante-Amate J, García Ruiz R, Herrera A, Villa I, González de Molina M (2014) Methodology and conversion factors to estimate the net primary productivity of historical and contemporary agroecosystems (I). Sociedad Española de Historia Agraria. DT-SEHA 1407. www.seha.info
  39. Haberl H, Erb K-H, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci 104:12942–12947. doi: 10.1073/pnas.0704243104 CrossRefGoogle Scholar
  40. Haberl H, Erb K-H, Gaube V, Gingrich S, Singh SJ (2013) Socioeconomic Metabolism and the Human Appropriation of Net Primary Production: What Promise Do They Hold for LTSER? In: Singh 40. SJ, Haberl H, Chertow M, Mirtl M, Schmid M (eds) Long term socio-ecological research studies in society-nature interactions across spatial and temporal scales. Springer, New York, pp 29–52Google Scholar
  41. Hall CAS (2011) Introduction to Special Issue on New Studies in EROI (Energy Return on Investment). Sustainability 3:1773–1777. doi: 10.3390/su3101773
  42. Hall CAS, Balogh S, Murphy DJ (2009) What is the minimum EROI that a sustainable society must have? Energies 2:25–47. doi: 10.3390/en20100025 CrossRefGoogle Scholar
  43. Hernández Díaz-Ambrona C, Etienne A, Martínez Valderrama J (2008) Producciones potenciales de herbáceas, de bellota y carga ganadera en las dehesas de Extremadura. Pastos XXXVII I(20):243–258Google Scholar
  44. INE (Instituto Nacional de Estadística) (1960) Anuario de estadística 1960. Fondo documental del Instituto Nacional de Estadística, MadridGoogle Scholar
  45. Infante-Amate J, González de Molina M (2013) Sustainable degrowth’ in agriculture and food: an agro-ecological perspective on Spain’s agri-food system (year 2000). J Clean Prod 38:27–35. doi: 10.1016/j.jclepro.2011.03.018 CrossRefGoogle Scholar
  46. Infante-Amate J, Soto Fernández D, Cid Escudero A, Guzmán GI, Aguilera E, García Ruiz R, González de Molina M (2014) Producción y consumo de madera y leña en España. Una serie provincial de los aprovechamientos forestales y cultivados (1900–2000). Working Paper, SEHA (www.seha.info)
  47. Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192. doi: 10.1016/j.agee.2011.02.029 CrossRefGoogle Scholar
  48. Lassaletta L, Billen G, Romero E, Garnier J, Aguilera E (2014) How changes in diet and trade patterns have shaped the N cycle at the national scale: Spain. Reg Environ Change 14(2):785–797. doi: 10.1007/s10113-013-0536-1 CrossRefGoogle Scholar
  49. Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P, Tubiello F, Grandgirard D, Monni S, Biala K (2010) Evaluation of the livestock sector’s contribution to the EU greenhouse gas emissions (GGELS)—final report. edited by Joint Research Centre: European Commission. http://ec.europa.eu/agriculture/analysis/external/livestock-gas/full_text_en.pdf. Accessed 23 Apr 2015
  50. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85(7):1840–1845. doi: 10.1890/04-0367 CrossRefGoogle Scholar
  51. MAGRAMA (Ministerio de Agricultura Alimentación y Medio Ambiente) (2008) Encuesta sobre superficie y rendimiento de cultivos. Resultados 2008. MAGRAMA, MadridGoogle Scholar
  52. MAGRAMA (Ministerio de Agricultura Alimentación y Medio Ambiente) (2014) Diagnóstico del Sector Forestal Español. Análisis y Prospectiva-Serie Agrinfo/Medioambiente n 8. http://www.magrama.gob.es/es/ministerio/servicios/. Accessed 20 Apr 2015
  53. MAGRAMA (Ministerio de Agricultura Alimentación y Medio Ambiente) (2015a) Encuesta sobre superficies y rendimientos de cultivo. Informe sobre regadíos en España. MAGRAMA, MadridGoogle Scholar
  54. MAGRAMA (Ministerio de Agricultura Alimentación y Medio Ambiente) (2015b) Spanish Agrarian Yearbooks are available online: http://www.magrama.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/. Accessed 2 Apr 2015
  55. MAPA (Ministerio de Agricultura, Pesca y Alimentación) (1995) Informe sobre la situación de los recursos fitogenéticos en España. International Conference and Programme for Plant Genetic Resources. MAPA, MadridGoogle Scholar
  56. MAPAMA (Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente) (2011) Informe del Inventario Español del Patrimonio Natural y de la Biodiversidad. Análisis de la situación. Año 2009. Madrid. http://www.mapama.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-espanol-patrimonio-natural-biodiv/informe_2009_Analisis_situacion.aspx. Accessed 15 Nov 2016
  57. Martínez Alier J (2011) The EROI of agriculture and its use by the Via Campesina. J Peasant Stud 38(1):145–160. doi: 10.1080/03066150.2010.538582 CrossRefGoogle Scholar
  58. Martínez Ruiz JI (2000) Trilladoras y tractores: energía, tecnología e industria en la mecanización de la agricultura española (1862–1967). Universidad de Sevilla, SevillaGoogle Scholar
  59. Marull J, Tello E, Fullana N, Murray I, Jover G, Font C, Coll F, Domene E, Leoni V, Decolli T (2015) Long-term bio-cultural heritage: exploring the intermediate disturbance hypothesis in agroecological landscapes (Mallorca, c. 1850–2012). Biodivers Conserv 24(13):3217–3251. doi: 10.1007/s10531-015-0955-z CrossRefGoogle Scholar
  60. Mateu Tortosa E (2013) Agriculture and propaganda: chilean nitrate fertilizers in Spain. Hist Agrar 59:95–123Google Scholar
  61. MI (Ministerio de Industria) (1961) La energía en España. Evolución y perspectivas 1945–1975. MadridGoogle Scholar
  62. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press World Resources Institute, WashingtonGoogle Scholar
  63. MINECO (Ministerio de Economía y Competitividad) (2015a) DATACOMEX—Estadísticas del comercio exterior español. Ministerio de Economía y Competitividad, Madrid. http://www.comercio.gob.es/es-ES/comercio-exterior/estadisticas-informes/Paginas/Informes-de-Comercio-Exterior.aspx. Accessed 1 May 2015
  64. MINECO (Ministerio de Economía y Competitividad) (2015b) http://serviciosede.mineco.gob.es/opac/abnetcl.exe/O7024/ID75382928?ACC=101. Accessed 3 Apr 2015
  65. MINETUR (Ministerio de Energía Industria y Turismo) (2015) Balances de energía final (1990–2013). MINETUR, MadridGoogle Scholar
  66. MINETUR (Ministerio de Energía Industria y Turismo) (2016) Estadísticas eléctricas anuales. 1958–2009 http://www.minetur.gob.es/energia/balances/Publicaciones/ElectricasAnuales/Paginas/ElectricasAnuales.aspx Accessed 12 Feb 2016. MINETUR, Madrid
  67. Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework. Ambio J Hum Environ 37(2):74–79. doi: 10.1579/0044-7447(2008)37[74:EROITA]2.0.CO;2 CrossRefGoogle Scholar
  68. Murphy DJ, Hall CAS, Dale M, Cleveland C (2011) Order from chaos: a preliminary protocol for determining the EROI of fuels. Sustainability 3:1888–1907. doi: 10.3390/su3101888 CrossRefGoogle Scholar
  69. Norgaard RB (1987) The epistemological basis og agroecology. In: Altieri MA (ed) agroecology. Westview Press (Boulder)-IT Publications, LondonGoogle Scholar
  70. Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci 107:5786–5791. doi: 10.1073/pnas.0905455107 CrossRefGoogle Scholar
  71. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291. doi: 10.1126/science.1208742 CrossRefGoogle Scholar
  72. Phelps J, Roman Carrasco L, Webb EL, Koh LP, Pascual U (2013) Agricultural intensification escalates future conservation costs. Proc Natl Acad Sci 110(19):7601–7606. doi: 10.1073/pnas.1220070110 CrossRefGoogle Scholar
  73. Ramankutty N, Rhemtulla J (2012) Can intensive farming save nature? Front Ecol Environ 10:455. doi: 10.1890/1540-9295-10.9.455 CrossRefGoogle Scholar
  74. Red Eléctrica de España (REE) (2011) El sistema eléctrico español 2010. http://www.ree.es/es/publicaciones/2013/07/informe-del-sistema-electrico-espanol-2010. Accessed 15 Sep 2015
  75. Robles AB (2008) En el conjunto de las Sierras Béticas: pastos, producción, diversidad y cambio global. Pastos, clave en la gestión de los territorios: Integrando disciplinas. Junta de Andalucía, Sevilla, pp 31–51Google Scholar
  76. Rodríguez Martín JA, Lopez Arias M, Grau Corbi JM (2009) Metales pesados, materia orgánica y otros parámetros de los suelos agrícolas y pastos de España. INIA-MAGRAMA, MCI, MadridGoogle Scholar
  77. Rodríguez-Martín JA, Álvaro-Fuentes J, Gonzalo J, Gil C, Ramos-Miras JJ, Grau Corbí JM, Boluda R (2016) Assessment of the soil organic carbon stock in Spain. Geoderma Part A 264:117–125. doi: 10.1016/j.geoderma.2015.10.010 CrossRefGoogle Scholar
  78. Romanyà J, Rovira P, Vallejo R (2007) Análisis del carbono en los suelos agrícolas de España. Aspectos relevantes en relación a la reconversión a la agricultura ecológica en el ámbito mediterráneo. Ecosistemas 16(1): 50–57. http://www.revistaecosistemas.net/articulo.asp?Id=465 Accessed 31 Jan 2017
  79. Rundlöf M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426. doi: 10.1016/j.biocon.2007.10.011 CrossRefGoogle Scholar
  80. San Miguel Ayanz A (coord.) (2009) Los pastos de la comunidad de Madrid. Tipología, Cartografía y Evaluación. CMAVOT, Comunidad de Madrid (Spain)Google Scholar
  81. Scheidel A, Sorman A (2012) Energy transitions and the global land rush: ultimate drivers and persistent consequences. Global Environ Change 22(3):559–794. doi: 10.1016/j.gloenvcha.2011.12.005 CrossRefGoogle Scholar
  82. Schröter M, Barton DN, Remme RP, Hein L (2014) Accounting for capacity and flow of ecosystem services: a conceptual model and a case study for telemark, Norway. Ecol Indic 36:539–551. doi: 10.1016/j.ecolind.2013.09.018 CrossRefGoogle Scholar
  83. Smil V (2013) Harvesting the biosphere. What we have taken from nature. MIT Press, CambridgeGoogle Scholar
  84. Soto D, Infante-Amate J, Guzmán GI, Cid A, Aguilera E, García-Ruiz R, González de Molina M (2016) The social metabolism of biomass in Spain, 1900–2008: from food to feed-oriented changes in the agroecosystems. Ecol Econ 128:130–138. doi: 10.1016/j.ecolecon.2016.04.017 CrossRefGoogle Scholar
  85. Spangenberg JH, Görg C, Thanh Truong D, Tekken V, Bustamante JV, Settele J (2014) Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int J Biodivers Sci Ecosyst Serv Manag 10(1):40–53. doi: 10.1080/21513732.2014.884166 CrossRefGoogle Scholar
  86. Tello E, Galán E, Sacristán V, Cunfer G, Guzmán GI, González de Molina M, Krausmann F, Gingrich S, Padró S, Marco I, Moreno-Delgado D (2016) Opening the black box of energy throughputs in farm systems: a decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès County, Catalonia, c.1860 and 1999). Ecol Econ 121:160–174. doi: 10.1016/j.ecolecon.2015.11.012 CrossRefGoogle Scholar
  87. Thompson RM, Brose U, Dunne JA, Hall RO Jr, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB, Tylianakis JM (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27(12):689–697. doi: 10.1016/j.tree.2012.08.005 CrossRefGoogle Scholar
  88. Tittonell P, Scopel E, Andrieu N, Posthumus H, Mapfumo P, Corbeels M, van Halsema GE, Lahmar R, Lugandu S, Rakotoarisoa J, Mtambanengwe F, Pound B, Chikowo R, Naudin K, Triomphe B, Mkomwa S (2012) Agroecology-based aggradation-conservation agriculture (ABACO): targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crop Res 132:168–174. doi: 10.1016/j.fcr.2011.12.011 CrossRefGoogle Scholar
  89. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. doi: 10.1016/j.biocon.2012.01.068 CrossRefGoogle Scholar
  90. Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses. Agric Syst 108:42–49. doi: 10.1016/j.agsy.2012.01.004 CrossRefGoogle Scholar
  91. UNESA (2005) El sector eléctrico a través de UNESA (1944–2004). Asociación española de la industria eléctrica, MadridGoogle Scholar
  92. Vanwalleghem T, Infante-Amate J, González de Molina M, Soto Fernández D, Gómez JA (2011) Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric Ecosyst Environ 142:341–351. doi: 10.1016/j.agee.2011.06.003 CrossRefGoogle Scholar
  93. von Wehrden H, Abson DJ, Beckmann M, Cord AF, Klotz S, Seppelt R (2014) Realigning the land-sharing/land-sparing debate to match conservation needs: considering diversity scales and land use history. Landsc Ecol 29:941–948. doi: 10.1007/s10980-014-0038-7 CrossRefGoogle Scholar
  94. Vos W, Meekes H (1999) Trends in European cultural landscape development: perspectives for a sustainable future. Landsc Urban Plan 46:3–14. doi: 10.1016/S0169-2046(99)00043-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gloria I. Guzmán
    • 1
  • Manuel González de Molina
    • 1
  • David Soto Fernández
    • 1
  • Juan Infante-Amate
    • 1
  • Eduardo Aguilera
    • 1
  1. 1.Agro-Ecosystems History LaboratoryPablo de Olavide UniversitySevilleSpain

Personalised recommendations