Potential use of forage-legume intercropping technologies to adapt to climate-change impacts on mixed crop-livestock systems in Africa: a review

Abstract

This paper summarizes effects of forage-legume intercropping on grain and fodder yield, land equivalent ratio, residual soil fertility, disease and insect pest reduction in mixed crop-livestock systems in Africa. In particular, it discusses the potential benefit of forage-legume intercropping in improving productivity, resource use efficiency and resilience of the system under climate change. Research undertaken in Africa demonstrates that intercropping forage legumes with cereals improves land intensification due to improvement in overall yield and soil fertility, and reduced risk of crop failure owing to rainfall variability, diseases, weeds and pests. Forage from intercropped legumes improves the intake of dietary nitrogen, digestibility of poor-quality feed, animal performance and efficiency of roughage feed utilization by ruminants. The improvement in digestibility alone leads to 15–30% reduction in methane emission per unit of animal product. Additional role that legumes may play includes lowering erosion (20–30%), reducing nitrogen leaching and carbon losses, and promoting carbon sequestration. Nitrogen fixed by legumes was on average 45 kg N/ha, and this ranges between 4 and 217 kg N/ha for herbaceous legumes and 8 and 643 kg N/ha for fodder tree species. Despite the many benefits of forage-legume intercropping, the current adoption rate in sub-Saharan Africa is very low. Future research aimed at selection of compatible varieties, appropriate plant geometry and temporal arrangement of the various intercrops under different locations and management scenarios, and minimizing the confounding effects of water, soil, light, microclimate and seeds could enhance adoption of the technology in Africa.

This is a preview of subscription content, access via your institution.

Fig. 1

(Source: adapted from FAO/IIASA 2000)

References

  1. Adeniyan ON, Ayoola OT, Ogunleti DO (2011) Evaluation of cowpea cultivars under maize and maize-cassava based intercropping systems. Afr J Plant Sci 5(10):570–574

    Google Scholar 

  2. Alhaji HI (2008) Yield performance of some cowpea varieties under sole and intercropping with Maize at Bauchi, Nigeria. ISSN 1994-9057. Afr Rev 2(3):278–291. doi:10.4314/afrrev.v2i3.41073

    Google Scholar 

  3. Astatke A, Mohamed-Saleem MA, El Wakeel A (1995) Soil water dynamics under cereal and forage legume mixtures on drained vertisols in the Ethiopian Highlands. Agric Water Manag 27:17–24. doi:10.1016/0378(95)01131-2

    Article  Google Scholar 

  4. Ayisi KK, Mpangane PNZ, Anthony W (2004) Grain yield and symbiotic activity of cowpea cultivars grown in sole and intercropping systems with maize in the Limpopo Province of South Africa. In: Proceedings of fourth international crop science congress, 26 September–1 October, Brisbane, Australia

  5. Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: Is it different for Africa? Food Policy 33(4):287–298. doi:10.1016/j.foodpol.2008.01.003

    Article  Google Scholar 

  6. Belane AK, Dakora FD (2009) Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. walp.) genotypes under field conditions in Ghana, using the 15 N natural abundance technique. Symbiosis 48:47–56. doi:10.1007/BF03179984

    CAS  Article  Google Scholar 

  7. Birteeb PT, Addah W, Japer N, Addo-Kwafo A (2011) Effects of intercropping cereal-legume on biomass and grain yield in the savanna zone tamale, Ghana. LRRD 23, Article #198. http://www.lrrd.org/lrrd23/9.birt23198.htm. Accessed 7 June 2012

  8. Brandt JE, Hons FM, Haby VA (1989) Effects of subterranean clover interseeding on grain yield, yield components, and nitrogen content of soft red winter wheat. J Prod Agric 2(4):347–351

    Article  Google Scholar 

  9. Bryan E, Ringer C, Okaba B, Koo J, Herrero M, Silvestri S (2011) Agricultural land management: capturing synergies between climate change adaptation, greenhouse gas mitigation and agricultural productivity: Insights from Kenya. Report to the World Bank Report 3b, Kenya, pp 116

  10. Carlson JD (2008) Intercropping with maize in sub-arid regions. Community Planning and Analysis Technical Brief 16, April 2008

  11. Cenpukdee U, Fukai S (1992) Cassava/legume intercropping with contrasting cassava cultivars. 1. Competition between component crops under three intercropping conditions. Field Crops Res 29(2):113–133. doi:10.1016/0378-4290(92)90082-K

    Article  Google Scholar 

  12. Cline WR (2007) Global warming and agriculture: Impact estimates by country. Center for Global Development and Peterson Institute for International Economics, Washington, DC

    Google Scholar 

  13. Cong WF, Hoffland E, Li L, Six J, Sun J-H, Bao XG, Zhang FS, Van Der Werf W (2015) Intercropping enhances soil carbon and nitrogen. Glob Change Biol 21:1715–1726. doi:10.1111/gcb.12738

    Article  Google Scholar 

  14. Dakora FD, Keya SO (1997) Contribution of legume nitrogen fixation to sustainable agriculture in sub-Saharan Africa. Soil Biol and Biochem 29(5–6):809–817. doi:10.1016/S0038-0717(96)00225-8

    CAS  Article  Google Scholar 

  15. Dovel RL, Chilcote G, Rainey J (1995) Intercropping barely and annual legumes for grain and forage. Klamath Experiment Station, Klamath, Falls. Annual Report

  16. Dzowela BH (1990) The pastures network for east and Souther Africa (PANESA): its regional collaborative research programme. Trop Grass 24:113–120

    Google Scholar 

  17. Eaglesham ARJ, Ayanaba A, Ranga Rao V, Eskew DL (1981) Improving the nitrogen nutrition of maize by intercropping cowpea. Soil Biol Biochem 13:169–171. doi:10.1016/0038-0717(81)90014-6

    CAS  Article  Google Scholar 

  18. Ejeta G (2007) Breeding for striga resistance in sorghum: explorations intricate host-parasite biology. Crop Sci 47(3):216–227. doi:10.2135/cropsci2007.04.011IPBS

    Google Scholar 

  19. Eskandari H, Ghanbari-Bonjara A, Galari M, Salari M (2009) Forage quality of cowpea intercropped with corn as affected by nutrient uptake and light interception. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(1):171–174

    CAS  Google Scholar 

  20. FAO (2000) Global agro-ecological zones CD-ROM FAO/IIASA. http://www.iiasa.ac.at/Research/LUC/GAEZ/index.htm. Accessed 25 Oct 2012

  21. FAO (2010) Food and agriculture organization of the United Nations statistical databases. http://faostat.fao.org/. Accessed 25 Oct 2012

  22. FAO (2016) Smallholder productivity under climatic variability: adoption and impact of widely promoted agricultural practices in Tanzania, by Aslihan Arslan, Ferderico Belotti Leslie Lipper. ESA working paper No. 16-03 Rome, FAO

  23. Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. Climate Change 2007: Impacts, Adaptation and Vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 211–272

  24. Fisher MJ, Rao IM, Ayarza MA, Lascono CE, Sanz JI, Thomas RJ, Vera RR (1994) Carbon storage by introduced deep-rooted grasses in South American savannas. Nature 371:236–238

    Article  Google Scholar 

  25. Giller KE, Cadisch G, Ehaliotis C, Adams E, Sakala WD, Mafongonya PL (1997) Building soil nitrogen capital in Africa. In: Buresh RJ, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. SSSA Special Publication Number 51. SSSA and ASA, Madison, pp 151–192

    Google Scholar 

  26. Gregorich EG, Rochette P, Van den Bygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res 83:53–72. doi:10.1016/j.still.2005.02.009

    Article  Google Scholar 

  27. Gurian-Sherman D (2011) Raising the steaks: global warming and pasture-raised beef production in the United States. Union of Concerned Scientists, Cambridge, p 45

    Google Scholar 

  28. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Ecology—climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162. doi:10.1126/science.1063699

    CAS  Article  Google Scholar 

  29. Hassen A, Lemma G, Rethman NFG (2006) Effect of Lablab purpureus and Vicia atropupuria as an intercrop, or in a crop rotation, on grain and forage yields of maize of Ethiopia. Trop Grasslands 40:111–118

    Google Scholar 

  30. Hauggard-Nielson H, Ambus P, Jensen ES (2001) Evaluating pea and barley cultivars for complementary in intercropping at different levels of soil N availability. Field Crops Res 72:185–196. doi:10.1016/S0378-4290(01)00176-9

    Article  Google Scholar 

  31. Hogberg P, Kvarnstrom M (1982) Nitrogen fixation by the woody legume Leucaena leucocephala in Tanzania. Plant Soil 66:21–28. doi:10.1007/BF02203398

    Article  Google Scholar 

  32. Hulet H, Gosseye P (1986) Effect of intercropping cowpea on dry-matter and grain yield of millet in the semi-arid zone of Mali. In: Haque I, Jutzi S, Neate PJH (eds) Potentials of forage legumes in farming systems of sub-Saharan Africa. Proceedings of a workshop held at ILCA, Addis Ababa, 16–19 September 1985. ILCA, Addis Ababa, pp 379–396

    Google Scholar 

  33. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves JR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32(2):329–364. doi:10.1007/s13593-011-0056-7

    CAS  Article  Google Scholar 

  34. Jeranyama P, Hesterman OB, Waddington SR, Harwood RR (2000) Relay-intercropping of sunhemp and cowpea into a smallholder maize system in Zimbabwe. Agro J 92:239–244. doi:10.2134/agonj2000.922239x

    Article  Google Scholar 

  35. Kabirizi J, Mugrwa S, Ziwa E, Nanyennya W, Matovu M, Kigongo J, Komutunga E, Agona A, and Mubiru D (2012) The role of forages in mitigating the effects of climate change in smallholder crop-livestock systems http://www.slidshare.net/cenafrica/. Accessed 25 Oct 2012

  36. Kahurananga JC (1990) Intercropping Trifolium spp. in wheat and its suitability for smallholder farmer conditions of the Ethiopian Highlands, In: Dzowela BH, Said AN, Wendem-Agenehu A, Kategile JA (eds), Utilization of research results on forage and agricultural by-product materials as animal feed resources in Africa. Proceedings of the first joint workshop held in Lilongwe, 5–9 December 1988 ILCA, Addis Ababa, http://www.fao.org/Wairdocs/ILRI/x5536E/x5536e00.htm#Contents. Accessed 11 Feb 2017

  37. Katsaruware RD, Manyanhaire IO (2009) Maize-cowpea intercropping and weed suppression in leaf stripped and detasselled maize in Zimbabwe. J Environ Agric Food Chem 8(11):1218–1226

    Google Scholar 

  38. Khan ZR, Hassanali A, Khamis TM, Pickett JA, Wadhams LJ (2001) Mechanism of Striga hermonthica suppression by Desmodium unicenatum in maize-based farming systems. In: Fer A, Thalouran P, Joel DM, Musselman LJ, Parker C, Verkeleij JAC (eds) Proceedings of the seventh international parasite weed symposium, Nantes, p 307

  39. King JM, Parsons DJ, Turnpenny JR, Nyangaga J, Bakari P, Wathes CM (2006) Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate. Anim Sci J 82:705–716. doi:10.1079/ASC200689

    Article  Google Scholar 

  40. Lemlem A (2013) The effect of intercropping maize with cowpea and lablab on crop yield. Herald J Agric Food Sci Res 2:156–170

    Google Scholar 

  41. Liang J, Qi X, Souza L, Luo Y (2016) Processes regulation progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences 13:2689–2699. doi:10.5194/bg-13-2689-2016

    Article  Google Scholar 

  42. Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396–410

    Google Scholar 

  43. Liya SM, Odu CTI, Agboola AA, Mulongoy K (1991) Estimation of N2 fixation by nitrogen fixing trees in the sub humid tropics using 15N dilution and difference method. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  44. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610. doi:10.1126/science.1152339

    CAS  Article  Google Scholar 

  45. Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739. doi:10.1641/0006-3568(2004)054

    Article  Google Scholar 

  46. Lupwayi NZ, Kennedy AC, Chirwa RM (2011) Grain legume impacts on soil biological processes in sub-Saharan Africa. Afr J Plant Sci 5(1):1–7

    Google Scholar 

  47. Luscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL (2014) Potential of legume-based grassland-livestock systems in Europe: a review. Grass Forage Sci 69:201–228. doi:10.1111/gfs.12124

    Article  Google Scholar 

  48. Maasdorp BV, Titterton M (1997) Nutritional improvement of maize silage dairying: mixed-crop silages from sole and intercropped legumes and a long-season variety of maize. 1. Biomass yield and nutritive value. Anim Feed Sci Tech 69:241–261. doi:10.1016/S0377-8401(97)81639-2

    Article  Google Scholar 

  49. Makoi JHJR, Chimphango SBM, Dakora FD (2009) Effect of legume plant density and mixed culture on symbiotic N2 fixation in five cowpea (Vigna unguiculata L. Walp) genotypes in South Africa. Symbiosis 48:57–67. doi:10.1007/BF03179985

    CAS  Article  Google Scholar 

  50. Mapiye C, Foti R, Chikumba N, Poshiwa X, Mwale M, Chivuraise C, Mupangwa JF (2006) Constraints to adoption of forage and browse legumes by smallholder dairy farmers in Zimbabwe. Livest Res Rural Dev 18(12). http://www.lrrd.org/lrrd18/12/mapi18175.htm. Accessed 11 Aug 2016

  51. Mba A, Ezumah HC (1985) Cassava/cowpea intercropping. International Institute of Tropical Agriculture. Annual Report for 1984. Ibadan, pp 175–176

  52. McDonagh JF, Hillyer AEM (2003) Grain legumes in pearl millet systems in northern Namibia: an assessment of potential nitrogen contributions. Expl Agric 39:349–362. doi:10.1017/S00014479703001364

    Article  Google Scholar 

  53. Mohammed IB, Olufajo OO, Singh BB, Miko S, Mohammed SG (2008) Evaluation of yield of components of sorghum/cowpea intercrops in the Sudan savannah ecological zone. ARPN J Agric Biol Sci 3:30–37

    Google Scholar 

  54. Mohammed-Saleem MA (1986) The ecology, vegetation and land-use of sub-humid Nigeria. In: Von Kaufamann R, Chater S, Blench R (eds) Livestock systems research in Nigeria sub-humid zone. ILCA, Addis Ababa

    Google Scholar 

  55. Mpairwe DR, Sabiiti EN, Ummuna NN, Tegegne A, Osuji P (2002) Effect of intercropping cereal crops with forage legumes and source of nutrients on cereal grain yield and fodder dry matter yields. Afri Crop Sci J 10:81–97. doi:10.4314/acsj.v10i1.27559

    Google Scholar 

  56. Murphy AM, Colucci PE (1999) A tropical forage solution to poor quality ruminant diets: a review of Lablab purpureus. Livest Res Rural Dev 11(2). http://www.cipav.org.co/lrrd/lrrd11/2/colu112.htm. Accessed 11 Feb 2017

  57. Murungu FS, Chiduza C, Muchaonyerwa P (2011) Productivity of maize after strip intercropping with leguminous crops under warm-temperate climate. Afr J Agric Res 6(24):5405–5413. doi:10.5897/AJAR11.507

    Article  Google Scholar 

  58. Mustaers HJW, Ezumah HC, Osiru DSO (1993) Cassava-based intercropping: a review. Field Crops Res 34:431–457. doi:10.1016/0378-4290(93)90125-7

    Article  Google Scholar 

  59. Ncube B, Twomlow SJ, van Wilk MT, Dimes JP, Giller KE (2007) Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in southwestern Zimbabwe. Plant Soil 299(1):1–15. doi:10.1007/s11104-007-9330-5

    CAS  Article  Google Scholar 

  60. Ndoye I, Dreyfus B (1988) N2 fixation by Sesbania rostrata and Sesbania sesban estimated using 15N and total N difference methods. Soil Biol Biochem 20:209–213. doi:10.1016/0038-0717(88)90038-7

    CAS  Article  Google Scholar 

  61. Ngongoni NT, Mwale M, Mapiye C, Moyo MT, Hamudikuwanda H, Titterton T (2007) Evaluation of cereal-legume intercropped forages for small holder dairy production in Zimbabwe. Livest Res Rural Dev 19:129. http://www.lrrd.org/lrrd19/9/ngon19129.htm. Accessed 16 Aug 2016

  62. Nicholson SE (1994) Recent rainfall fluctuations in Africa and their relationships to past conditions over the continent. Holocene 4:121–131. doi:10.1177/095968369400400202

    Article  Google Scholar 

  63. Nicholson SE (2001) Climatic and environmental change in Africa during the last two centuries. Clim Res 17:123–144. doi:10.3354/cr017123

    Article  Google Scholar 

  64. Nnadi LA Haque I (1986) Forage legume-cereal systems: improvement of soil fertility and agricultural production with special reference to sub-Saharan Africa. In: Haque I, Jutzi S, Neate PJH (eds) (1986) Potentials of forage legumes in farming systems of sub-Saharan Africa. Proceedings of a workshop held at ILCA, Addis Ababa, Ethiopia, 16–19 September 1985. ILCA, Addis Ababa. http://www.fao.org/wairdocs/ilri/x5488e/x5488e0p.htm

  65. Oba G (2001) The effect of multiple droughts on cattle in Obbu, Northern Kenya. J Arid Environ 41:375–386. doi:10.1006/jare.2000.0785

    Article  Google Scholar 

  66. Ojiem JO, Vanlauwe B, De Ridder N, Giller KE (2007) Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant Soil 292:119–135. doi:10.1007/s11104-007-9207-7

    CAS  Article  Google Scholar 

  67. Onim JFM, Mathuva M, Oteno K, Fitzhugh HA (1990) Soil fertility changes and response of maize and beans to green manures of leucaena, sesbania and pigeon pea. Agrofor Syst 12:197–215. doi:10.1007/BF00123474

    Article  Google Scholar 

  68. Oseni TO (2010) Evaluation of sorghum-cowpea intercrop productivity in savannah agro-ecology using competition indices. J Agri Sci 2(3):229–239. doi:10.5539/jas.v2n3p229

    Google Scholar 

  69. Reinhardt CF, Tesfamichael N (2011) Nitrogen in combination with Desmodium intortum effectively suppresses Striga asiatica in a sorghum-Desmodium intercropping system. J Agric Rural Dev Trop SubTrop 112:98–128

    Google Scholar 

  70. Rusinamhodzi L, Murwira HK, Nyamangra J (2006) Cotton-cowpea intercropping and its N2 fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions. Plant Soil 287:327–336. doi:10.1007/s11104-006-9080-9

    CAS  Article  Google Scholar 

  71. Samuel M, Mesfin D (2003) Effect of under sowing annual forage legumes on grain and dry matter stalk yield of sorghum (Sorghum bicolor l.) and dry matter forage yield in the eastern Amhara region. In: Asfaw Y, Tamrat D (eds) Proceedings of the eleventh annual conference of the ethiopian society of animal production (ESAP), Addis Ababa, Ethiopia, 28–30 August 2003. ESAP, Addis Ababa, p 405

    Google Scholar 

  72. Schroth G, Lehmann J (1995) Contrasting effects of roots and mulch from three agro forestry species on yields of alley cropped maize. Agric Ecosyst Environ 54:89–101. doi:10.1016/0167(95)00585-G

    Article  Google Scholar 

  73. Senbayram M, Wenthe C, Lingner A, Isselstein J, Steinmann H, Kaya C, Köbke S (2016) Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy Sustain Soc 6(1):2–9

    Article  Google Scholar 

  74. Seo SN, Mendelsohn R (2007) Climate change impacts on animal husbandry in Africa: a Ricardian analysis. World Bank Policy Research Working Paper No. 4261. doi:10.1596/1813-9450-4261

  75. Serdeczny O, Adams S, Baarsch F, Coumou D, Robinson A, Hare W, Schaeffer M, Perrette M, Reinhardt J (2016) Climate change impacts in sub-Saharan Africa from physical changes to their social repercussions. Reg Environ Change. doi:10.1007/S10113-015-0910-2

    Google Scholar 

  76. Shah MM, Fischer G, van Velthuizen H (2008) Food security and sustainable agriculture: the challenges of climate change in sub-Saharan Africa. Commission on Sustainable Development (CSD), CSD-16 Review session 5–16 May 2008. United Nations, New York

  77. Singh BB, Adjeighe HA (2002) Improving cowpea cereal-based cropping systems in the dry savannas of West Africa. In: Fatokun A, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, pp 276–284

    Google Scholar 

  78. Skovgard H, Päts P (1997) Reduction of stem borer damage by intercropping maize with cowpea. Agric Ecosyst Environ 62:13–19. doi:10.1016/S0167-8809(96)01114-0

    Article  Google Scholar 

  79. Snap SS, Mafongoya PL, Waddington S (1998) Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agric Ecosyst Environ 71(1–3):185–200. doi:10.1016/S0167-8809(98)00140-6

    Article  Google Scholar 

  80. Soussan J, Lemaire G (2014) Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric Ecosyst Environ 190:9–17. doi:10.1016/j.agee.2013.10.012

    Article  Google Scholar 

  81. Sprent JI, David WO, Felix D (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61:1257–1265. doi:10.1093/jxb/erp342

    CAS  Article  Google Scholar 

  82. Sumberg J (2002) The logic of fodder legumes in Africa. Food Policy 27:285–300. doi:10.1016/S0306-9192(02)000169-2

    Article  Google Scholar 

  83. Surve VH, Arvadia MK, Tandel BB (2012) Effect of row ratio in cereal-legume fodder under intercropping systems on biomass production and economics. IJARR 2(1):32–34

    Google Scholar 

  84. Tarre R, Macedo R, Cantarutti RB, de Rezende PC, Pereira JM, Ferreira E, Alves BJR, Urquiaga S, Boddey RM (2001) The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Plant Soil 234:15–26

    CAS  Article  Google Scholar 

  85. Thornton PK, Herrero M (2014) Climate change adaptation in mixed crop-livestock systems in developing countries. Global Food Secur 3(2):99–107. doi:10.1016/j.gfs.2014.02.002

    Article  Google Scholar 

  86. Thornton PK, Van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127. doi:10.1016/j.agsy.2009.05.002

    Article  Google Scholar 

  87. Tomm GO, Foster RK (2001) Effect of intercropping wheat with forage legumes on wheat production and ground cover. Pesq agropec bras Brasilia 36(3):465–471. doi:10.1590/S0100-204X2001000300010

    Article  Google Scholar 

  88. Van Soest PJ (1982) Nutritional ecology of the ruminants. O& B books, Corvallis

    Google Scholar 

  89. Verge XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142:255–269. doi:10.1016/j.agrformet.2006.06.011

    Article  Google Scholar 

  90. Vesterager JM, Nielsen NE, Høng-Jensen H (2008) Effects of cropping history and phosphorus source on yield and nitrogen fixation in sole and intercropped cowpea-maize systems. Nutr Cycl Agroecosys 80:61–73. doi:10.1007/s10705-007-9121-7

    Article  Google Scholar 

  91. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  Google Scholar 

  92. Zhuoga X, Wilkins JF, Friend MA, Piltz JW (2016) Effect of supplementing barley straw with lucerne silage or cottonseed meal on diet digestibility and growth rate of steers. Anim Feed Sci Tech 218:84–92. doi:10.1016/j.anifeedsci.2016.05.010

    CAS  Article  Google Scholar 

  93. Zougmore R, Kambou FN, Ouattara K, Guillobez S (2000) Sorghum-cowpea intercropping: an effective technique against runoff and soil erosion in the Sahel (Saria, Burkina Faso). Arid Soil Res Rehab 14(4):329–342. doi:10.1080/08903060050136441

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding received from ANIMALCHANGE, the Department of Science and Technology, and National Research Foundation (NRF), South Africa. The authors also would like to thank Belete Shenkute Gemeda for collecting some literature for the review work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abubeker Hassen.

Additional information

Editor: Wolfgang Cramer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassen, A., Talore, D.G., Tesfamariam, E.H. et al. Potential use of forage-legume intercropping technologies to adapt to climate-change impacts on mixed crop-livestock systems in Africa: a review. Reg Environ Change 17, 1713–1724 (2017). https://doi.org/10.1007/s10113-017-1131-7

Download citation

Keywords

  • Adaptation
  • Africa
  • Climate change
  • Forage legume
  • Intercropping
  • Mixed farming