Regional Environmental Change

, Volume 18, Issue 3, pp 637–650 | Cite as

Impact assessment of climate change on farming systems in the South Mediterranean area: a Tunisian case study

  • Imen Souissi
  • Jean Marie Boisson
  • Insaf Mekki
  • Olivier Therond
  • Guillermo Flichman
  • Jacques Wery
  • Hatem Belhouchette
Original Article


This study considers a quantitative approach for assessing the performance of Tunisian farming systems to face climate change. It is based on the resilience concept and the calculation, with a modelling chain, of three indicators: land stock, labour stock, and income flux. Two system states, “base” and “climate change”, and a time horizon of 2010–2025, are developed and compared for representative farming systems. The study shows that 55% of the farming systems were identified as being resilient to climate change. They are diversified and mostly grow cereals, vegetables, and forage crops combined with livestock, increasing their capability to mitigate climate change by reorganizing crop activities. 35% of the farms identified as being non-resilient are dominated by orchards, or cereals and orchards. They showed an important drop in farm income (−45%), mainly due to their inability to adapt their cropping systems to water stress and soil salinity. Finally, only 10% were identified as being poorly resilient farming systems. Those farms have mainly intensified cereal cropping systems based on a strategy of purchasing land to increase the surface area of profitable activities (forage and livestock). Overall, the methodology can be adapted for other dry land areas in the Mediterranean region and help experts and policy-makers to propose and test strategies for adapting to climate change.


Resilience Farming system Quantitative indicator assessment Modelling chain 

Supplementary material

10113_2017_1130_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)


  1. Abbes K (2005) Analyse de la relation agriculture environnement: une approche bio-économique. Cas de la salinisation des sols et de la pollution par les nitrates au nord tunisien. Thèse (Dr. de la Faculté des Sciences Economiques), Université Monpellier IGoogle Scholar
  2. Alexandrov VA, Hoogenboom B (2000) The impact of climate variability and change on crop yield in Bulgaria. Agric For Meteorol 104:315–327. doi: 10.1016/S0168-1923(00)00166-0 CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper, vol 56. FAO, RomeGoogle Scholar
  4. Anderies JM, Ryan P, Walker BH (2006) Loss of resilience, crisis, and institutional change: lessons from an intensive agricultural system in southeastern Australia. Ecosystems 9:865–878. doi: 10.1007/s10021-006-0017-1 CrossRefGoogle Scholar
  5. Bachta MS (2011) La céréaliculture en Tunisie: une politique de régulation à repenser. CIHEAM Notes d’Analyse du CIHEAM:19, ParisGoogle Scholar
  6. Barbier B, Bergeron G (1999) Impact of policy interventions on land management in Honduras: results of a bioeconomic model. Agric Syst 60:1–16CrossRefGoogle Scholar
  7. Belhouchette H (2004) Evaluation de la durabilité de successions culturales à l’échelle d’un périmètre irrigué en Tunisie: utilisation conjointe d’un modèle de culture (Cropsyst), d’un SIG et d’un modèle bio-économique. Thèse (Dr. d’Université en Sciences Agronomiques), Ensa (Montpellier)Google Scholar
  8. Belhouchette H, Blanco M, Wery J, Flichman G (2012) Sustainability of irrigated farming systems in a Tunisian region: a recursive stochastic programming analysis. Comput Electron Agric 86:100–110. doi: 10.1016/j.compag.2012.02.016 CrossRefGoogle Scholar
  9. Boussard JM, Boussemart JP, Flichman G, Jacquet F, Lefer HB (1997) Les effets de la réforme de la PAC sur les exploitations de grande culture. Economie Rurale. doi: 10.3406/ecoru.1997.4865 Google Scholar
  10. Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche YM, Cellier P, Debaeke P, Gaudillère JP, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model stics. Eur J Agron 18:309–332. doi: 10.1016/S1161-0301(02)00110-7 CrossRefGoogle Scholar
  11. Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781. doi: 10.1007/s10021-001-0045-9 CrossRefGoogle Scholar
  12. Clarke D, Smith M, El-Askari K (1998) CropWat for Windows: user guide. FAO, RomeGoogle Scholar
  13. Dahan R, Boughlala M, Mrabet R, Laamari A, Balaghi R, Lajouad L (2012) A review of available knowledge on land degradation in Morocco. International Center for Agricultural Research in the Dry Areas (ICARDA) and USAID. Oasis Country Report 2Google Scholar
  14. Darnhofer I, Bellon S, Dedieu B, Milestad R (2008) Adaptative farming systems—a position paper. Paper presented at the 8th European IFSA symposium: empowerment of the rural actors, a renewal of farming systems perspectives, Clermont Ferrand, France, 6–10 July 2008Google Scholar
  15. Donatelli M, Russell G, Rizzoli AE, Acutis M, Adam M, Athanasiadis IN, Balderacchi M, Bechini L, Belhouchette H, Bellocchi G, Bergez J-E, Botta M, Braudeau E, Bregaglio S, Carlini L, Casellas E, Celette F, Ceotto E, Charron-Moirez MH, Confalonieri R, Corbeels M, Criscuolo L, Cruz P, di Guardo A, Ditto D, Dupraz C, Duru M, Fiorani D, Gentile A, Ewert F, Gary C, Habyarimana E, Jouany C, Kansou K, Knapen R, Filippi GL, Leffelaar PA, Manici L, Martin G, Martin P, Meuter E, Mugueta N, Mulia R, van Noordwijk M, Oomen R, Rosenmund A, Rossi V, Salinari F, Serrano A, Sorce A, Vincent G, Theau J-P, Thérond O, Trevisan M, Trevisiol P, van Evert FK, Wallach D, Wery J, Zerourou A (2010) A component-based framework for simulating agricultural production and externalities. In: Brouwer FM, Ittersum MK (eds) Environmental and agricultural modelling: integrated approaches for policy impact assessment. Springer, Dordrecht, pp 63–108. doi: 10.1007/978-90-481-3619-3_4 CrossRefGoogle Scholar
  16. Enfors EI, Gordon LJ (2007) Analysing resilience in dryland agroecosystems: a case study of the Makanya catchment in Tanzania over the past 50 years. Land Degrad Dev 18:680–696. doi: 10.1002/ldr.807 CrossRefGoogle Scholar
  17. Ewert F, van Ittersum MK, Bezlepkina I, Oude Lansink A, Brouwer F, Andersen E, Flichman G, Heckelei T, Alkan Olsson J, Olsson L, Rizzoli A, van der Wal T, Wery J (2005) Development of a conceptual framework for integrated analysis and assessment of agricultural systems in SEAMLESS-IF. SEAMLESS report no. 1, WageningenGoogle Scholar
  18. Giller KE, Tittonell P, Rufino MC, van Wijk MT, Zingore S, Mapfumo P, Adjei-Nsiah S, Herrero M, Chikowo R, Corbeels M, Rowe EC, Baijukya F, Mwijage A, Smith J, Yeboah E, van der Burg WJ, Sanogo OM, Misiko M, de Ridder N, Karanja S, Kaizzi C, K’ungu J, Mwale M, Nwaga D, Pacini C, Vanlauwe B (2011) Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric Syst 104:191–203. doi: 10.1016/j.agsy.2010.07.002 CrossRefGoogle Scholar
  19. Gunderson LH, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, WashingtonGoogle Scholar
  20. Havet A, Coquil X, Fiorelli J, Gibon A, Martel G, Roche B, Ryschawy J, Schaller N, Dedieu B (2014) Review of livestock farmer adaptations to increase forages in crop rotations in western France. Agric Ecosyst Environ 190:120–127. doi: 10.1016/j.agee.2014.01.009 CrossRefGoogle Scholar
  21. Hazell PBR, Norton RD (1986) Mathematical programming for economic analysis in agriculture. Macmillan, LondonGoogle Scholar
  22. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. doi: 10.1146/ CrossRefGoogle Scholar
  23. Jacquet F, Pluvinage J (1997) Climatic uncertainty and farm policy: a discrete stochastic programming model for cereal-livestock farms in Glgeria. Agric Syst 53:387–407. doi: 10.1016/0308-521X(95)00076-H CrossRefGoogle Scholar
  24. Janssen S, van Ittersum MK (2007) Assessing farm innovations and responses to policies: a review of bio-economic farm models. Agric Syst 94:622–636. doi: 10.1016/j.agsy.2007.03.001 CrossRefGoogle Scholar
  25. Kaine GW, Tozer PR (2005) Stability, resilience and sustainability in pasture-based grazing systems. Agric Syst 83:27–48. doi: 10.1016/j.agsy.2004.03.001 CrossRefGoogle Scholar
  26. Kandulu JM, Bryan BA, King D, Connor JD (2012) Mitigating economic risk from climate variability in rain-fed agriculture through enterprise mix diversification. Ecol Econ 79:105–112. doi: 10.1016/j.ecolecon.2012.04.025 CrossRefGoogle Scholar
  27. Kassam A, Derpsch R, Friedrich T (2014) Global achievements in soil and water conservation: the case of conservation agriculture. Int Soil Water Conserv Res 2:5–13. doi: 10.1016/S2095-6339(15)30009-5 CrossRefGoogle Scholar
  28. Ksib Z (2013) La gestion de l’eau dans le bassin versant du Lebna, Cap Bon (Tunisie): pratiques et stratégies d’acteurs locaux. Mémoire, CIHEAM-IAMMGoogle Scholar
  29. Lallau B, Thibaut E (2009) La résilience en débat: quel devenir pour les agriculteurs en difficulté? Revue d’Etudes en Agriculture et Environnement 90:79–102Google Scholar
  30. Landais E (1998) Modelling farm diversity: new approaches to typology building in France. Agric Syst 58:505–527. doi: 10.1016/S0308-521X(98)00065-1 CrossRefGoogle Scholar
  31. Louhichi K, Belhouchette H, Wery J, Therond O, Flichman G (2008) Impact assessment of the 2003 CAP reform and the nitrate directive on the arable farming system in the Midi-Pyrénées region: bio-economic modeling at field, farm and regional levels. Paper presented at the 109th EAAE seminar. The CAP after the Fischler reform: National implementations, impact assessment and the agenda for future reforms, Viterbo, Italy, NovemberGoogle Scholar
  32. Luers AL, Lobell DB, Sklar LS, Lee Addams C, Matson PA (2003) A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob Environ Change 13:255–267. doi: 10.1016/S0959-3780(03)00054-2 CrossRefGoogle Scholar
  33. Mansour M, Hachicha M (2014) The vulnerability of tunisian agriculture to climate change. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance - A sustainable approach. Elsevier, pp 485–500. doi: 10.1016/B978-0-12-800875-1.00021-1.
  34. MARH Ministère Tunisien de l’Agriculture et des Ressources Hydrauliques, GTZ (2007) Stratégie nationale d’adaptation de l’agriculture tunisienne et des écosystèmes aux changements climatiques. Cahier 2: synthèseGoogle Scholar
  35. McCown R, Hammer G, Hargreaves J, Holzworth D, Freebairn D (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst 50:255–271. doi: 10.1016/0308-521X(94)00055-V CrossRefGoogle Scholar
  36. Ministère tunisien de l’environnement et GIZ (2012) Stratégie Nationale sur le Changement Climatique. Rapport de la stratégie, 165Google Scholar
  37. Muradian R (2001) Ecological thresholds: a survey. Ecol Econ 38:7–24. doi: 10.1016/S0921-8009(01)00146-X CrossRefGoogle Scholar
  38. Pachauri RK, Allen MR, Barros V, Broome J, Cramer W, Christ R, Church J, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCCGoogle Scholar
  39. Parsonson-Ensor C, Saunders C (2011) Exploratory research into the resilience of farming systems during periods of hardship. In: New Zealand Agricultural and Resource Economics Society conference August, New ZealandGoogle Scholar
  40. Perrings C, Stern DI (2000) Modelling loss of resilience in agroecosystems: rangelands in Botswana. Environ Resour Econ 16:185–210. doi: 10.1023/A:1008374222463 CrossRefGoogle Scholar
  41. Reggiani A, De Graaff T, Nijkamp P (2002) Resilience: an evolutionary approach to spatial economic systems. Netw Spat Econ 2:211–229. doi: 10.1023/A:1015377515690 CrossRefGoogle Scholar
  42. Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100:51–60. doi: 10.1016/j.agsy.2008.12.009 CrossRefGoogle Scholar
  43. Reidsma P, Ewert F, Alfons OL, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102. doi: 10.1016/j.eja.2009.06.003 CrossRefGoogle Scholar
  44. Richardson CW, Wright DA (1984) WGEN: A model for generating daily weather variables. US Department of Agriculture, Agricultural Research Service, WashingtonGoogle Scholar
  45. Rivington M, Mattthews KB, Bellocchi G, Buchan K, Stöckle CO, Donatelli M (2007) An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environ Model Softw 22:202–210. doi: 10.1016/j.envsoft.2005.07.018 CrossRefGoogle Scholar
  46. Rodriguez D, deVoil P, Power B, Cox H, Crimp S, Meinke H (2011) The intrinsic plasticity of farm businesses and their resilience to change. An Australian example. Field Crops Res 124:157–170. doi: 10.1016/j.fcr.2011.02.012 CrossRefGoogle Scholar
  47. Roozitalab MH, Serghini H, Keshavarz A, Eser V, De-Pauw E (2013) Elements of research strategy and priorities for sustainable agricultural development of highlands in Central, West Asia and North Africa. International Center for Agriculture Research in the Dry Areas (ICARDA), AmmanGoogle Scholar
  48. Ross AM, Rhodes DH, Hastings DE (2008) Definining changeability: reconciling flexibility, adaptability, scalability, modifiability and robustness for maintaining system lifecycle value. Syst Eng 11:246–262. doi: 10.1002/sys.20098 CrossRefGoogle Scholar
  49. Souissi I, Temani N, Belhouchette H (2013) Vulnerability of Mediterranean agricultural systems to climate: from regional to field scale analysis. In: Collins E (ed) Climate vulnerability. Elsevier, Paris, pp 89–103. doi: 10.1016/b978-0-12-384703-4.00221-5 CrossRefGoogle Scholar
  50. Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi: 10.1016/s1161-0301(02)00109-0 CrossRefGoogle Scholar
  51. Van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan Olsson J, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli A, van der Wal T, Wien J-E, Wolf J (2008) Integrated assessment of agricultural systems. A component-based framework for the European Union (SEAMLESS). Agric Syst 96:150–165. doi: 10.1016/j.agsy.2007.07.009 CrossRefGoogle Scholar
  52. Waithaka M, Thornton P, Herrero M, Shepherd K (2006) Bio-economic evaluation of farmers’ perceptions of viable farms in western Kenya. Agric Syst 90:243–271. doi: 10.1016/j.agsy.2005.12.007 CrossRefGoogle Scholar
  53. Walker B, Pearson L (2007) A resilience perspective of the SEEA. Ecol Econ 61:708–715. doi: 10.1016/j.ecolecon.2006.04.010 CrossRefGoogle Scholar
  54. Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social-ecological systems. Ecol Soc 9:5CrossRefGoogle Scholar
  55. Walker B, Gunderson LH, Kinzig AP, Folke C, Carpenter SR, Schultz L (2006) A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol Soc 11:1–15Google Scholar
  56. Wam HK, Hofstad O, Nævdal E, Sankhayan P (2005) A bio-economic model for optimal harvest of timber and moose. For Ecol Manag 206:207–219. doi: 10.1016/j.foreco.2004.10.062 CrossRefGoogle Scholar
  57. Zhou J, Wang C, Zhang H, Dong F, Zheng X, Gale W, Li S (2011) Effect of water saving management practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat–summer maize cropping system. Field Crops Res 122:157–163. doi: 10.1016/j.fcr.2011.03.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Imen Souissi
    • 1
    • 2
  • Jean Marie Boisson
    • 3
  • Insaf Mekki
    • 4
  • Olivier Therond
    • 5
    • 6
  • Guillermo Flichman
    • 1
  • Jacques Wery
    • 7
  • Hatem Belhouchette
    • 1
    • 8
  1. 1.Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM)Montpellier CedexFrance
  2. 2.Institut National des Sciences et Technologies de la Mer (INSTM), Centre la GouletteLa GouletteTunisia
  3. 3.Université Montpellier 1UMR5474 LAMETAMontpellierFrance
  4. 4.Institut National de Recherche en Génie-Rural, Eaux et Forêts (INRGREF)ArianaTunisia
  5. 5.UMR LAE, INRAUniversité de LorraineColmarFrance
  6. 6.INP ToulouseUMR 1248 AGIRCastanet-Tolosan CedexFrance
  7. 7.SupAgro MontpellierUMR-SystemMontpellier Cedex 2France
  8. 8.CIHEAM-IAMMUMR-SystemMontpellier Cedex 2France

Personalised recommendations