Skip to main content

Advertisement

Log in

Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Mountain ecosystems provide key services to a large portion of the population in the tropics. However, they are particularly vulnerable to regional environmental changes such as soil degradation, via soil erosion and associated nutrient loss, both dissolved in runoff and suspended in sediment. Current trends in land use conversion combined with projections of intensified hydrological extremes potentially amplify these threats. We analyze the interactive effects of rainfall characteristics (at three time scales) and vegetation cover on the runoff–erosion–nutrient loss progression for a group of vegetation cover types that represent different land use conversion stages. After a year of observations we found, as expected, that natural forests have the highest potential for regulating precipitation–runoff–erosion–nutrient loss. The highest amounts of runoff occurred in pasturelands, and croplands had the highest erosion losses. Croplands showed the highest concentrations of soluble nutrients in runoff and in sediment. However, due to higher runoff amounts, pasturelands had the greatest loss of dissolved nutrients. Precipitation seasonality significantly influenced both erosion and nutrient loss. This is particularly critical in managed agricultural and pasture systems where increased runoff and erosion rates, combined with unsustainable management practices, may lead to alterations in soil and water quality. Our results indicate how agricultural practices need to adapt fertilization scheduling to rainfall seasonality to minimize potential environmental impacts. Collectively, our results highlight a fundamental management need in tropical mountains where the combination of rapid land use change and altered climate threatens ecosystem integrity and ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alemayehu F, Taha N, Nyssen J, Girma A, Zenebe A, Behailu M, Deckers S, Poesen J (2009) The impacts of watershed management on land use and land cover dynamics in Eastern Tigray (Ethiopia). Resour Conserv Recycl 53:192–198. doi:10.1016/j.resconrec.2008.11.007

    Article  Google Scholar 

  • An J, Zheng F, Römkens MM, Li G, Yang Q, Wen L, Wang B (2013) The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses. Nat Hazards 67:411–430. doi:10.1007/s11069-013-0570-9

    Article  Google Scholar 

  • Anderson D, Glibert P, Burkholder J (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726. doi:10.1007/BF02804901

    Article  Google Scholar 

  • Atucha A, Merwin I, Brown M, Gardiazabal F, Mena F, Adriazola C, Lehmann J (2013) Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 368:393–406. doi:10.1007/s11104-012-1520-0

    Article  CAS  Google Scholar 

  • Balthazar V, Vanacker V, Molina A, Lambin EF (2015) Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol Indic 48:63–75. doi:10.1016/j.ecolind.2014.07.043

    Article  Google Scholar 

  • Cavelier J, Jaramillo M, Solis D, de León D (1997) Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. J Hydrol 193:83–96. doi:10.1016/S0022-1694(96)03151-4

    Article  CAS  Google Scholar 

  • Ceballos A, Cerda A, Schnabel S (2002) Runoff production and erosion processes on a Dehesa in Western Spain. Geogr Rev 92:333–353. doi:10.1111/j.1931-0846.2002.tb00147.x

    Article  Google Scholar 

  • Collins A, Walling D, Sichingabula H, Leeks GJ (2001) Using 137Cs measurements to quantify soil erosion and redistribution rates for areas under different land use in the Upper Kaleya River basin, southern Zambia. Geoderma 104:299–323. doi:10.1016/S0016-7061(01)00087-8

    Article  Google Scholar 

  • Cortés G, Velasco I (2009) Índices de Fournier Modificado y de concentración de la precipitación, como estimadores del factor de riesgo de la erosión, en Sinaloa, México, en: Avances en estudios sobre desertificación, Universidad de Murcia (Eds), Congreso Internacional sobre Desertificación. Murcia, pp 431–434. http://congresos.um.es/icod/icod2009/paper/viewFile/4221/5521

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920

    Article  Google Scholar 

  • De Groot RS, Wilson MA, Boumans RM (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408. doi:10.1016/S0921-8009(02)00089-7

    Article  Google Scholar 

  • Dissmeyer GE, Foster GR (1981) Estimating the cover-management factor (C) in the universal soil loss equation for forest conditions. J Soil Water Conserv 36(4):235–240

    Google Scholar 

  • Ehigiator OA, Anyata BU (2011) Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria. J Environ Manage 92:2875–2880. doi:10.1016/j.jenvman.2011.06.015

    Article  CAS  Google Scholar 

  • Erskine WD, Mahmoudzadeh A, Myers C (2002) Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena 49(4):271–287. doi:10.1016/S0341-8162(02)00065-6

    Article  Google Scholar 

  • Evans R (2002) An alternative way to assess water erosion of cultivated land—field-based measurements: and analysis of some results. Appl Geogr 22:187–207. doi:10.1016/S0143-6228(02)00004-8

    Article  Google Scholar 

  • Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Chang Biol 11:1565–1576. doi:10.1111/j.1365-2486.2005.01011.x

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  Google Scholar 

  • García-Leoz V (2015) Efecto del cambio de la cobertura vegetal sobre la función de regulación hídrica: análisis multitemporal para un gradiente de intervención antrópica. Mater´s Thesis in Environmental Engineering. Universidad de Antioquia, Medellín

  • Gautam S, Mbonimpa EG, Kumar S, Bonta JV, Lal R (2015) Agricultural Policy Environmental eXtender model simulation of climate change impacts on runoff from a small no-till watershed. J Soil Water Conserv 70(2):101–109. doi:10.2489/jswc.70.2.101

    Article  Google Scholar 

  • Hoyos N (2005) Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena 63(1):85–108

    Article  Google Scholar 

  • IGAC (2007) Estudio general de suelos y zonificación de tierras del Departamento de Antioquia. Imprenta Nacional de Colombia, Bogotá

    Google Scholar 

  • Labrière N, Locatelli B, Laumonier Y, Freycon V, Bernoux M (2015) Soil erosion in the humid tropics: a systematic quantitative review. Agric Ecosyst Environ 203:127–139. doi:10.1016/j.agee.2015.01.027

    Article  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241. doi:10.1146/annurev.energy.28.050302.105459

    Article  Google Scholar 

  • Leitinger G, Tasser E, Newesely C, Obojes N, Tappeiner U (2010) Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. J Hydrol 385:95–104. doi:10.1016/j.jhydrol.2010.02.006

    Article  Google Scholar 

  • León JD, González MI, Gallardo JF (2010) Distribución del agua lluvia en tres bosques altoandinos de la Cordillera Central de Antioquia, Colombia. Rev Fac Nac Agron 63(1):5319–5336

    Google Scholar 

  • Locatelli B, Imbach P, Wunder S (2014) Synergies and trade-offs between ecosystem services in Costa Rica. Environ Conserv 41:27–36

    Article  Google Scholar 

  • Lowman MD, Schowalter TD (2012) Plant science in forest canopies-the first 30 years of advances and challenges (1980-2010). New Phytol 194:12–27. doi:10.1111/j.1469-8137.2012.04076.x

    Article  Google Scholar 

  • Lu D, Li G, Valladares GS, Batistella M (2004) Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degrad Dev 15(5):499–512. doi:10.1002/ldr.634

    Article  Google Scholar 

  • Magrin G, Marengo J, Boulanger J-P, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S (2014) Central and South America. In: Barros VR, Field CB, Dokken CB, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1499–1566

  • Martínez ML, Pérez-Maqueo O, Vázquez G, Castillo-Campos G, García-Franco J, Mehltreter K, Equihua M, Landgrave R (2009) Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For Ecol Manage 258:1856–1863. doi:10.1016/j.foreco.2009.02.023

    Article  Google Scholar 

  • Miura S, Ugawa S, Yoshinaga S, Hirai K, Yamada T (2015) Floor cover percentage determines splash erosion in chamaecyparis obtusa forests. Soil Sci Soc Am J 79(6):1782–1791. doi:10.2136/sssaj2015.05.0171

    Article  CAS  Google Scholar 

  • Molina A, Govers G, Vanacker V, Poesen J, Zeelmaekers E, Cisneros F (2007) Runoff generation in a degraded Andean ecosystem: interaction of vegetation cover and land use. Catena 71:357–370. doi:10.1016/j.catena.2007.04.002

    Article  Google Scholar 

  • Muñoz-Robles C, Reid N, Tighe M, Briggs SV, Wilson B (2011) Soil hydrological and erosional responses in areas of woody encroachment, pasture and woodland in semi-arid Australia. J Arid Environ 75:936–945. doi:10.1016/j.jaridenv.2011.05.008

    Article  Google Scholar 

  • Muñoz-Villers LE, McDonnell JJ (2013) Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol Earth Syst Sci 17:3543–3560. doi:10.5194/hess-17-3543-2013

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nadal-Romero E, Lasanta T, García-Ruiz JM (2013) Runoff and sediment yield from land under various uses in a Mediterranean mountain area: long-term results from an experimental station. Earth Surf Process Landf 38(4):346–355

    Article  Google Scholar 

  • Nadal-Romero E, Lasanta T, Cerdá A (2016) Integrating extensive livestock and soil conservation policies in Mediterranean mountain areas for recovery of abandoned lands in the Central Spanish Pyrenees. A long-Term research assessment. Land Degrad Dev. doi:10.1002/ldr.2542

    Google Scholar 

  • Negishi JN, Sidle RC, Ziegler AD, Noguchi S, Rahim NA (2008) Contribution of intercepted subsurface flow to road runoff and sediment transport in a logging-disturbed tropical catchment. Earth Surf Process Landf 33:1174–1191. doi:10.1002/esp.1606

    Article  Google Scholar 

  • Niu XY, Wang YH, Yang H, Zheng JW, Zou J, Xu MN, Wu S-S, Xie B (2015) Effect of land use on soil erosion and nutrients in Dianchi Lake Watershed, China. Pedosphere 25:103–111. doi:10.1016/S1002-0160(14)60080-1

    Article  Google Scholar 

  • Nosetto MD, Jobbágy EG, Brizuela AB, Jackson RB (2012) The hydrologic consequences of land cover change in central Argentina. Agric Ecosyst Environ 154:2–11. doi:10.1016/j.agee.2011.01.008

    Article  Google Scholar 

  • Nunes AN, de Almeida AC, Coelho COA (2011) Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl Geogr 31:687–699. doi:10.1016/j.apgeog.2010.12.006

    Article  Google Scholar 

  • Oliveira PTS, Wendland E, Nearing MA (2012) Rainfall erosivity in Brazil: a review. Catena 100:139–147

    Article  Google Scholar 

  • Ortega LF (2014) Evaluación comparativa del papel de diferentes coberturas vegetales sobre algunos servicios ecosistémicos en los Andes colombianos. Master´s thesis in Geomorphology and Soils. Universidad Nacional de Colombia, Sede Medellín

  • Owino JO, Owido SFO, Chemelil MC (2006) Nutrients in runoff from a clay loam soil protected by narrow grass strips. Soil Tillage Res 88:116–122. doi:10.1016/j.still.2005.05.007

    Article  Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133

    Article  Google Scholar 

  • Peng T, Wang S (2012) Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 90:53–62. doi:10.1016/j.catena.2011.11.001

    Article  Google Scholar 

  • Pierzynski GM, Vance GF, Sims JT (2005) Soils and environmental quality, 3rd edn. Lewis Publishers, CRC Press, Boca Raton. ISBN 0-8493-1616-2

    Google Scholar 

  • Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50:98–118. doi:10.1002/2013WR014087

    Article  Google Scholar 

  • Ramírez CD (2014) Determinantes espacialmente explícitos de transiciones en coberturas terrestres con significativo impacto para la provisión de servicios ecosistémicos: análisis temporal y espacial, 1986–2012. Mater´s thesis in Environment and Development. Universidad Nacional de Colombia, Sede Medellín

  • Restrepo-Posada PJ, Eagleson PS (1982) Identification of independent rainstorms. J Hydrol 55:303–319. doi:10.1016/0022-1694(82)90136-6

    Article  Google Scholar 

  • Roa-García MC, Brown S, Schreier H, Lavkulich LM (2011) The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resour Res 47(5):W05510. doi:10.1029/2010WR009582

    Article  Google Scholar 

  • Ross SM, Thornes JB, Nortcliff S (1990) Soil hydrology, nutrient and erosional response to the clearance of terra firme forest, Maraca; Island, Roraima. Northern Brazil Geogr J 156:267–282. doi:10.2307/635528

    Google Scholar 

  • Ruiz Suescún OA, Acosta Jaramillo JJ, León Peláez JD (2005) Escorrentía superficial en bosques montanos naturales y plantados de Piedras Blancas, Antioquia (Colombia). Rev Fac Nac Agron Medellín 58:2635–2650

    Google Scholar 

  • Sardans J, Peñuelas J (2015) Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr 24:261–275. doi:10.1111/geb.12259

    Article  Google Scholar 

  • Schlesinger W, Abrahams A, Parsons A, Wainwright J (1999) Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: i. Rainfall simulation experiments. Biogeochemistry 45:21–34. doi:10.1007/BF00992871

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy, 2nd edn., Agricultural handbook 436United States Department of Agriculture (USDA), Washington

    Google Scholar 

  • Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112(3):228–245. doi:10.1016/j.geomorph.2009.06.009

    Article  Google Scholar 

  • Vadas PA, Busch DL, Powell JM, Brink GE (2015) Monitoring runoff from cattle-grazed pastures for a phosphorus loss quantification tool. Agric Ecosyst Environ 199:124–131. doi:10.1016/j.agee.2014.08.026

    Article  CAS  Google Scholar 

  • Vanacker V, Bellin N, Molina A, Kubik P (2014) Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model. Landsc Ecol 29:293–309. doi:10.1007/s10980-013-9956-z

    Article  Google Scholar 

  • Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. J Ecol 78:974–992. doi:10.2307/2260947

    Article  Google Scholar 

  • Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst SC. European Geosciences Union 8(6):1017–1030. Id:hal-00304978

  • Wang L, Tang L, Wang X, Chen F (2010) Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil Tillage Res 110:243–250. doi:10.1016/j.still.2010.08.012

    Article  Google Scholar 

  • Wasige JE, Groen TA, Smaling E, Jetten V (2013) Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing. Int J Appl Earth Obs Geoinf 21:32–42. doi:10.1016/j.jag.2012.08.005

    Article  Google Scholar 

  • Xu G, Cheng Y, Li P, Li Z, Zhang J, Wang T (2015) Effects of natural rainfall on soil and nutrient erosion on sloping cropland in a small watershed of the Dan River, China. Quat Int 380–381:327–333. doi:10.1016/j.quaint.2015.02.010

    Article  Google Scholar 

  • Zar JH (1984) Bioestatistical analysis, 5th edn. Department of Biological Sciences, Northern Illinois University, EEUU, DeKalb

    Google Scholar 

  • Zhang GH, Liu GB, Wang GL, Wang YX (2011) Effects of vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere 21:676–684. doi:10.1016/S1002-0160(11)60170-7

    Article  CAS  Google Scholar 

  • Zöbisch MA, Richter C, Heiligtag B, Schlott R (1995) Nutrient losses from cropland in the Central Highlands of Kenya due to surface runoff and soil erosion. Soil Tillage Res 33:109–116. doi:10.1016/0167-1987(94)00441-G

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by “Programa de investigación en la gestión del riesgo asociado con cambio climático y ambiental en cuencas hidrográficas”, Convocatoria 543–2011 Colciencias; partial funding from IAEA Research Contract 17351 and Estrategia de sostenibilidad 2014–2015 Universidad de Antioquia. Field and laboratory support by A. I. Cardona, A. M. Martin, J. Sánchez, L. I. Arango, Y. A. Vélez, C. J. Caraballo, E. J. Guana and J. S. Orozco. We also thank Óscar and Martha Pérez for access and logistics at field site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Suescún.

Additional information

Editor: Juan Ignacio Lopez Moreno.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suescún, D., Villegas, J.C., León, J.D. et al. Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Reg Environ Change 17, 827–839 (2017). https://doi.org/10.1007/s10113-016-1071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1071-7

Keywords

Navigation