Skip to main content

Advertisement

Log in

Contrasting direct and indirect effects of warming and drought on isoprenoid emissions from Mediterranean oaks

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The degree to which climate warming and increasing drought will alter isoprenoid emissions of Mediterranean forests remains unclear, because most studies were carried out on single factors with isolated plants thus neglecting possible factor interactions and indirect effects at plant and community level. We studied foliar isoprenoid emissions, phenology, growth and survival rates on Quercus pubescens (QP) and Quercus ilex (QI) saplings growing in competition with herbaceous species under three temperature treatments (ambient, +1.5, +3 °C) combined with two precipitation treatments (normal, −30 % precipitation). Elevated temperature treatments significantly enhanced isoprenoid emissions of both species (~70 %). Most of this enhancement could be attributed to increases in the foliar emission capacities. Reduced precipitation tended to decrease isoprenoid emissions (~20 %), but this effect was variable depending on plant species, measurement period and interaction with temperature treatments. In QP, measured early summer, most of the emission variability was associated with that of photosynthesis while in QI, measured mid-summer, emissions and photosynthesis were rather uncoupled probably due to changes in resource allocation and persistent impairment of the primary metabolism caused by stress. Elevated temperature reduced sapling survival rates of both species (~20 %) but increased longevity of QP leaves (~18 %). Leaf biomasses at plant and community level were not affected by treatments but were strongly reduced by the presence of herbaceous competitors. The results underline the complexity of potential plant responses to climate change to be considered for predicting the future evolution of isoprenoid emission in the Mediterranean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Barbeta A, Ogaya R, Peñuelas J (2013) Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. Glob Change Biol 19:3133–3144. doi:10.1111/gcb.12269

    Article  Google Scholar 

  • Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100. doi:10.1016/0098-8472(92)90034-Y

    Article  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254. doi:10.1111/j.1469-8137.2007.02094.x

    Article  CAS  Google Scholar 

  • Brüggemann N, Schnitzler JP (2002) Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings. Plant Biol 4:456–463. doi:10.1055/s-2002-34128

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  CAS  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi:10.1038/nature11688

    CAS  Google Scholar 

  • Chuine I, Morin X, Sonié L, Collin C, Fabreguettes J, Degueldre D, Salager J-L, Roy J (2012) Climate change might increase the invasion potential of the alien C4 grass Setaria parviflora (Poaceae) in the Mediterranean Basin. Divers Distrib 18:661–672. doi:10.1111/j.1472-4642.2011.00880.x

    Article  Google Scholar 

  • Cinege G, Louis S, Hänsch R, Schnitzler J-P (2009) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol 69:593–604. doi:10.1007/s11103-008-9441-2

    Article  CAS  Google Scholar 

  • Curci G, Beekmann M, Vautard R, Smiatek G, Steinbrecher R, Theloke J, Friedrich R (2009) Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos Environ 43:1444–1455. doi:10.1016/j.atmosenv.2008.02.070

    Article  CAS  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi:10.1038/nclimate1633

    Article  Google Scholar 

  • Fischbach RJ, Staudt M, Zimmer I, Rambal S, Schnitzler JP (2002) Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex L. Physiol Plant 114:354–360. doi:10.1034/j.1399-3054.2002.1140304.x

    Article  CAS  Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler J-P, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 44:687–697. doi:10.1111/j.1365-313X.2008.03538.x

    Article  Google Scholar 

  • Genard-Zielinski A-C, Ormeno E, Boissard C, Fernandez C (2014) Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth? PLoS One 9:e112418. doi:10.1371/journal.pone.0112418

    Article  Google Scholar 

  • Grote R, Mayrhofer S, Fischbach RJ, Steinbrecher R, Staudt M, Schnitzler JP (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos Environ 40:152–165. doi:10.1016/j.atmosenv.2005.10.071

    Article  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Netherlands, pp 315–355

    Chapter  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617. doi:10.1029/93jd00527

    Article  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210. doi:10.5194/acp-6-3181-2006

    Article  CAS  Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi:10.1111/nph.12021

    Article  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x

    Article  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88. doi:10.1023/A:1006127516791

    Article  CAS  Google Scholar 

  • Lavoir AV, Staudt M, Schnitzler JP, Landais D, Massol F, Rocheteau A, Rodriguez R, Zimmer I, Rambal S (2009) Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences 6:1167–1180. doi:10.5194/bg-6-1167-2009

    Article  CAS  Google Scholar 

  • Li Z, Sharkey TD (2013) Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ 36:429–437. doi:10.1111/j.1365-3040.2012.02584.x

    Article  CAS  Google Scholar 

  • Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009) Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Change Biol 15:2163–2175. doi:10.1111/j.1365-2486.2009.01852.x

    Article  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler J-P (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol 139:474–484. doi:10.1104/pp.105.066373

    Article  CAS  Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186:900–910. doi:10.1111/j.1469-8137.2010.03252.x

    Article  Google Scholar 

  • Niinemets Ü, Sun Z, Talts E (2015) Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves. Plant Cell Environ 38:2707–2720. doi:10.1111/pce.12582

    Article  CAS  Google Scholar 

  • Paasonen P, Asmi A, Petaja T, Kajos MK, Aijala M, Junninen H, Holst T, Abbatt JPD, Arneth A, Birmili W, van der Gon HD, Hamed A, Hoffer A, Laakso L, Laaksonen A, Richard Leaitch W, Plass-Dulmer C, Pryor SC, Raisanen P, Swietlicki E, Wiedensohler A, Worsnop DR, Kerminen V-M, Kulmala M (2013) Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat Geosci 6:438–442. doi:10.1038/ngeo1800

    Article  CAS  Google Scholar 

  • Pegoraro E, Rey A, Bobich EG, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R (2004) Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Funct Plant Biol 31:1137–1147. doi:10.1071/FP04142

    Article  CAS  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144. doi:10.1016/j.tplants.2009.12.005

    Article  Google Scholar 

  • Pérez-Ramos IM, Rodríguez-Calcerrada J, Ourcival JM, Rambal S (2013) Quercus ilex recruitment in a drier world: a multi-stage demographic approach. Perspect Plant Ecol Evol Syst 15:106–117. doi:10.1016/j.ppees.2012.12.005

    Article  Google Scholar 

  • Potosnak MJ, LeStourgeon L, Nunez O (2014) Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration. Sci Total Environ 481:352–359. doi:10.1016/j.scitotenv.2014.02.065

    Article  CAS  Google Scholar 

  • Rasulov B, Huve K, Bichele I, Laisk A, Niinemets U (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570. doi:10.1104/pp.110.162081

    Article  CAS  Google Scholar 

  • Rodriguez-Calcerrada J, Buatois B, Chiche E, Shahin O, Staudt M (2013) Leaf isoprene emission declines in Quercus pubescens seedlings experiencing drought–Any implication of soluble sugars and mitochondrial respiration? Environ Exp Bot 85:36–42. doi:10.1016/j.envexpbot.2012.08.001

    Article  CAS  Google Scholar 

  • Sharkey TD, Monson RK (2014) The future of isoprene emission from leaves, canopies and landscapes. Plant Cell Environ 37:1727–1740. doi:10.1111/pce.12289

    Article  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18. doi:10.1093/aob/mcm240

    Article  CAS  Google Scholar 

  • Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21:385–395. doi:10.1046/j.1365-3040.1998.00288.x

    Article  CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S (2003) How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes. New Phytol 158:61–73. doi:10.1046/j.1469-8137.2003.00722.x

    Article  CAS  Google Scholar 

  • Staudt M, Ennajah A, Mouillot F, Joffre R (2008) Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought? Can J For Res 38:2965–2975. doi:10.1139/X08-134

    Article  CAS  Google Scholar 

  • Tattini M, Velikova V, Vickers C, Brunetti C, Di Ferdinando M, Trivellini A, Fineschi S, Agati G, Ferrini F, Loreto F (2014) Isoprene production in transgenic tobacco alters isoprenoids, non-structural carbohydrates and phenylpropanoids metabolism, and protects photosynthesis from drought stress. Plant Cell Environ 37:1950–1964. doi:10.1111/pce.12350

    Article  CAS  Google Scholar 

  • Vanzo E, Jud W, Li Z, Albert A, Domagalska MA, Ghirardo A, Niederbacher B, Frenzel J, Beemster GTS, Asard H, Rennenberg H, Sharkey TD, Hansel A, Schnitzler J-P (2015) Facing the future - Effects of short-term climate extremes on isoprene-emitting and non-emitting poplar. Plant Physiol 169:560–575. doi:10.1104/pp.15.00871

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905. doi:10.1111/j.1365-3040.2005.01342.x

    Article  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200. doi:10.1111/j.1365-2486.2008.01803.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly funded by the program GICC (Gestion et Impacts du Changement Climatique) of the French Ministry of Ecology and Sustainable Development. We thank B. Buatois, C. Collin, D. Degueldre and L. Sonié for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Staudt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 kb)

Supplementary material 2 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staudt, M., Morin, X. & Chuine, I. Contrasting direct and indirect effects of warming and drought on isoprenoid emissions from Mediterranean oaks. Reg Environ Change 17, 2121–2133 (2017). https://doi.org/10.1007/s10113-016-1056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1056-6

Keywords

Navigation