Skip to main content
Log in

Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Environmental change can be viewed as the combined result of long-term processes and singular events. While long-term trends appear to be readily available for observation (in the form of temporal comparisons or space-for-time substitution), it is more difficult to gain information on singular events in the past, although these can be equally significant in shaping ecosystems. We examined the past 700 years in the history of a lowland wetland landscape in the Czech Republic with the help of palaeoecological, ecological, landscape archaeological, and archival data. Macrofossil and pollen data were compared to known drainage works in the area and historical climatological data. Trends and events in habitat conditions were assessed using species indicator values. Results showed that ecological succession was the general process in the study area, detected as a trend towards eutrophication, desiccation, and vegetation closure. Short-term events influenced development at the sites mainly from the second half of the nineteenth century. This is consistent with drainage history, although bias related to sample frequency cannot be excluded. On the whole, long-term trends and discrete events were complementary on different scales. We conclude that humans facilitated and accelerated background processes, which can be most likely associated with the succession of open wetlands towards terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aston M (1985) Interpreting the landscape: landscape archaeology and local history. Routledge, London

    Book  Google Scholar 

  • Balátová-Tuláčková E (1968) Grundwasserganglinien und Wiesengesellschaften. (Vergleichende Studie der Wiesen aus Südmähren und der Südwestslowakei). Přírodovědné práce ústavů Československé Akademie Věd Brno 2/2:1–37

    Google Scholar 

  • Balátová-Tuláčková E (1976) Rieder und Sumpfwiesen der Ordnung Magnocaricetalia in der Záhorie-Tiefebene und dem nördlich angrenzenden Gebiete. Vegetácia ČSSR Ser B 3:1–257

    Google Scholar 

  • Bennike O (2000) Palaeoecological studies of Holocene lake sediments from west Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 155:285–304. doi:10.1016/S0031-0182(99)00121-2

    Article  Google Scholar 

  • Beug HJ (2004) Lietfaden der Pollen bestimmung für Mitteleuropa und angrezende Gebiete. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, London

    Google Scholar 

  • Bobbink R, Hornung M, Roelofs JG (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brander LM, Bräuer I, Gerdes H, Ghermandi A, Kuik O, Markandya A, Navrud S, Nunes PALD, Schaafsma M, Vos H, Wagtendonk A (2012) Using meta-analysis and GIS for value transfer and scaling up: valuing climate change induced losses of European wetlands. Environ Resour Econ. doi:10.1007/s10640-011-9535-1

    Google Scholar 

  • Brázdil R, Štěpánková P, Kyncl T, Kyncl J (2002) Fir tree-ring reconstruction of March–July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res 20:223–239. doi:10.3354/cr020223

    Article  Google Scholar 

  • Brázdil R, Chromá K, Valášek H, Dolák L (2012) Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751–1900 AD. Clim Past 8:467–481. doi:10.5194/cp-8-467-2012

    Article  Google Scholar 

  • Bronk Ramsey C (2011) OxCal 4.2 Manual. Oxford Radiocarbon Accelerator Unit, Oxford. http://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html. Accessed 20 August 2015

  • Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T (2011) Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor Appl Climatol 105:167–180. doi:10.1007/s00704-010-0381-9

    Article  Google Scholar 

  • Cappers RTJ, Neef R (2012) Handbook of plant palaeoecology. Barkhuis Publishing, Groningen

    Google Scholar 

  • Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale Zadenatlas van Nederland. Digital Seed Atlas of the Netherlands. Barkhuis Publishing, Groningen

    Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013) Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75:3–26. doi:10.1007/s00027-011-0233-4

    Article  Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution, Washington

    Book  Google Scholar 

  • Czerepko J (2008) A long-term study of successional dynamics in the forest wetlands. Forest Ecol Manag 255:630–642. doi:10.1016/j.foreco.2007.09.039

    Article  Google Scholar 

  • Davidson TA, Sayer CD, Bennion H, David C, Rose N, Wade MP (2005) A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biol 50:1671–1686. doi:10.1111/j.1365-2427.2005.01414.x

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506. doi:10.1078/1439-1791-00185

    Article  Google Scholar 

  • Dobrovolný P, Brázdil R, Trnka M, Kotyza O, Valášek H (2015) Precipitation reconstruction for the Czech Lands, AD 1501–2010. Int J Climatol 35:1–14. doi:10.1002/joc.3957

    Article  Google Scholar 

  • Egan D, Howell E (eds) (2001) The historical ecology handbook: a restorationist’s guide to reference ecosystems. Island Press, Washington

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Fernández-Jalvo Y, Scott L, Andrews P (2011) Taphonomy in palaeoecological interpretations. Quat Sci Rev 30:1296–1302. doi:10.1016/j.quascirev.2010.07.022

    Article  Google Scholar 

  • Gifford DP (1981) Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines. Adv Archaeol Method Theory 4:365–438

    Article  Google Scholar 

  • Glenn-Lewin DC, Peet RK, Veblen TT (eds) (1992) Plant succession: theory and prediction. Chapman & Hall, London

    Google Scholar 

  • Grimm EC (2011) Tilia software v.1.7.16. Illinois State Museum, Springfield

    Google Scholar 

  • Hejný S (1957) Ein Beitrag zur ökologischen Gliederung der Makrophyten in den Niederungsgewässern der Tschechoslowakei. Preslia 29:349–368

    Google Scholar 

  • Hejný S (1960) Ökologische Charakteristik der Wasser- und Sumpflanzen in den slowakischen Tiefebenen (Donau- und Theißgebiet). Vydavateľstvo Slovenskej akadémie vied, Bratislava

    Google Scholar 

  • Hejný S, Hroudová Z (1987) Plant adaptations to shallow water habitats. Arch Hydrobiol 27:157–166

    Google Scholar 

  • Hejný S, Husák Š (1978) Higher plant communities. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems. Springer, Berlin, pp 23–64

    Chapter  Google Scholar 

  • Hejný S, Husák Š, Jeřábková O, Ostrý I (1982) Anthropogenic impact on fishpond flora and vegetation. In: Gopal B, Turner RE, Wetzel RG, Whigham DF (eds) Wetlands, ecology and management. National Institute of Ecology and International Scientific Publications, Jaipur, pp 425–433

    Google Scholar 

  • Hrádek M (1999) Geomorphological aspects of the flood of July 1997 in the Morava and Oder Basins in Moravia, Czech Republic. Studia Geomorphologica Carpatho-Balcanica 33:45–66

    Google Scholar 

  • Hroudová Z, Zákravský P, Hrouda L, Ostrý I (1992) Oenanthe aquatica (L.) Poir.: seed reproduction, population structure, habitat conditions and distribution in Czechoslovakia. Folia Geobot 27:301–335

    Article  Google Scholar 

  • Jamrichová E, Szabó P, Hédl R, Kuneš P, Bobek P, Pelánková B (2013) Continuity and change in the vegetation of a Central European oakwood. Holocene 23:46–56. doi:10.1177/0959683612450200

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

    Article  Google Scholar 

  • Keddy PA (2010) Wetland ecology. Principles and conservation, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. Bot Rev 71:449–482. doi:10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2

    Article  Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136. doi:10.1139/a06-001

    Article  Google Scholar 

  • Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettlehole peatland in northern Poland. Holocene 17:1185–1196. doi:10.1177/0959683607085123

    Article  Google Scholar 

  • Magyari E, Sümegi P, Braun M, Jakab G, Molnár M (2001) Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. J Ecol 89:1019–1032. doi:10.1111/j.1365-2745.2001.00624.x

    Article  CAS  Google Scholar 

  • McNeill JR (2000) Something new under the sun: An environmental history of the twentieth-century world. Norton, New York

    Google Scholar 

  • Middleton BA, Holsten B, van Diggelen R (2006) Biodiversity management of fens and fen meadows by grazing, cutting and burning. Appl Veg Sci 9:307–316. doi:10.1111/j.1654-109X.2006.tb00680.x

    Article  Google Scholar 

  • Moravcová L, Zákravský P, Hroudová Z (2001) Germination and seedling establishment in Alisma gramineum, A. plantago-aquatica and A. lanceolatum under different environmental conditions. Folia Geobot 36:131–146. doi:10.1007/BF02803158

    Article  Google Scholar 

  • Němec R, Dřevojan P, Šumberová K (2014) Wetlands on arable land in Znojmo region as a refuge of important and rare vascular plants. Thayensia 11:3–76

    Google Scholar 

  • Novák V, Pelíšek J (1943) Stručná charakteristika půd na přesypových pískách v lesní oblasti Dubrava u Hodonína. Lesnická práce 8:225–235

    Google Scholar 

  • Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geog 27:230–259. doi:10.1191/0309133303pp379ra

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  • Podani J (2006) Braun-Blanquet’s legacy and data analysis in vegetation science. J Veg Sci 17:113–117. doi:10.1111/j.1654-1103.2006.tb02429.x

    Article  Google Scholar 

  • Pokorný P, Jankovská V (2000) Long-term vegetation dynamics and the infilling process of a former lake (Švarcenberk, Czech Republic). Folia Geobot 35:433–457. doi:10.1007/BF02803554

    Article  Google Scholar 

  • Pott R, Remy D (2000) Gewässer des Binnenlandes. Ulmer, Stuttgart

    Google Scholar 

  • Prach K, Walker LR (2011) Four opportunities for studies of ecological succession. Trends Ecol Evol 26:119–123. doi:10.1016/j.tree.2010.12.007

    Article  Google Scholar 

  • Rackham O (2006) Woodlands. Collins, London

    Google Scholar 

  • Rasmussen P, Anderson NJ (2005) Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr 32:1993–2005. doi:10.1111/j.1365-2699.2005.01352.x

    Article  Google Scholar 

  • Reille M (1995) Pollen et spores D´Europe et D´Afrique du Nort. Supplement 1. Laboratoire de botanique historique et palynologie, Marseille

    Google Scholar 

  • Reille M (1998) Pollen et spores D´Europe et D´Afrique du Nort. Supplement 2. Laboratoire de botanique historique et palynologie, Marseille

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887. doi:10.2458/azu_js_rc.55.16947

    Article  CAS  Google Scholar 

  • Rintanen T (1996) Changes in the flora and vegetation of 113 Finnish lakes during 40 years. Ann Bot Fenn 33:101–122

    Google Scholar 

  • Sayre NF (2005) Ecological and geographical scale: parallels and potential for integration. Prog Hum Geog 29:276–290. doi:10.1191/0309132505ph546oa

    Article  Google Scholar 

  • Sonnlechner C (2004) The establishment of new units of production in Carolingian times: making early medieval sources relevant for environmental history. Viator 35:21–48. doi:10.1484/J.VIATOR.2.300191

    Article  Google Scholar 

  • Stankevica K, Kalnina L, Klavins M, Cerina A, Ustupe L, Kaup E (2015) Reconstruction of the Holocene palaeoenvironmental conditions accordingly to the multiproxy sedimentary records from Lake Pilvelis, Latvia. Quat Int 386:102–115. doi:10.1016/j.quaint.2015.02.031

    Article  Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198. doi:10.1126/science.224.4654.1191

    Article  CAS  Google Scholar 

  • Strohbach M, Audorff V, Beierkuhnlein C (2009) Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors? J Limnol 68:375–384. doi:10.4081/jlimnol.2009.375

    Article  Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi:10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2

    Article  Google Scholar 

  • Szabó P (2010) Ancient woodland boundaries in Europe. J Hist Geogr 36:205–214. doi:10.1016/j.jhg.2009.10.005

    Article  Google Scholar 

  • Szabó P (2015) Historical ecology: past, present and future. Biol Rev 90:997–1014. doi:10.1111/brv.12141

    Article  Google Scholar 

  • Szabó P, Hédl R (2011) Advancing the integration of history and ecology for conservation. Conserv Biol 25:680–687. doi:10.1111/j.1523-1739.2011.01710.x

    Article  Google Scholar 

  • Szabó P, Hédl R (2013) Socio-economic demands, ecological conditions and the power of tradition: past woodland management decisions in a Central European landscape. Landsc Res 38:243–261. doi:10.1080/01426397.2012.677022

    Article  Google Scholar 

  • Ter Braak CFJ, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78:57–72. doi:10.1016/0025-5564(86)90031-3

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

    Google Scholar 

  • Thompson KBSR, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241. doi:10.2307/2389893

    Article  Google Scholar 

  • Tolasz R, Míková T, Valeriánová A, Voženílek V (eds) (2007) Climate atlas of Czechia. Czech Hydrometeorological Institute, Praha and Palacký University, Olomouc

    Google Scholar 

  • Tölgyesi C, Bátori Z, Erdős L (2014) Using statistical tests on relative ecological indicator values to compare vegetation units—different approaches and weighting methods. Ecol Indic 36:441–446. doi:10.1016/j.ecolind.2013.09.002

    Article  Google Scholar 

  • Väliranta MM (2006) Long-term changes in aquatic plant species composition in north-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquat Bot 85:224–232. doi:10.1016/j.aquabot.2006.05.003

    Article  Google Scholar 

  • van Geel B, Bohncke SJ, Dee H (1980) A palaeoecological study of an upper Late Glacial and Holocene sequence from “de Borchert”, the Netherlands. Rev Paleobot Palyno 31:367–448. doi:10.1016/0034-6667(80)90035-4

    Article  Google Scholar 

  • Velikevich FY, Zastawniak E (2006) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 1—pteridophytes and monocotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Velikevich FY, Zastawniak E (2008) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 2—herbaceous dicotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Walker M, Walker MJC (2005) Quaternary dating methods. Wiley, New York

    Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit W, Beyschlag W (eds) Genetics physiology systematics ecology. Springer, Berlin, pp 399–450

    Google Scholar 

  • Wildi O (2016) Why mean indicator values are not biased. J Veg Sci 27:40–49. doi:10.1111/jvs.12336

    Article  Google Scholar 

  • Wohlfarth B, Tarasov P, Bennike O, Lacourse T, Subetto D, Torssander P, Romanenko F (2006) Late glacial and Holocene palaeoenvironmental changes in the Rostov-Yaroslavl’ area, West Central Russia. J Paleolimnol 35:543–569. doi:10.1007/s10933-005-3240-4

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Petr Dobrovolný for his help with climatic data. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No 278065, from the Grant Agency of the Czech Academy of Sciences (Project No. IAA600050812), from the Czech Science Foundation (Centre of Excellence PLADIAS, 14-36079G), and from long-term research development Project No. RVO 67985939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Szabó.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, P., Gálová, A., Jamrichová, E. et al. Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg Environ Change 17, 501–514 (2017). https://doi.org/10.1007/s10113-016-1033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1033-0

Keywords

Navigation