Regional Environmental Change

, Volume 17, Issue 2, pp 501–514 | Cite as

Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic

  • Péter Szabó
  • Andrea Gálová
  • Eva Jamrichová
  • Kateřina Šumberová
  • Jan Šipoš
  • Radim Hédl
Original Article

Abstract

Environmental change can be viewed as the combined result of long-term processes and singular events. While long-term trends appear to be readily available for observation (in the form of temporal comparisons or space-for-time substitution), it is more difficult to gain information on singular events in the past, although these can be equally significant in shaping ecosystems. We examined the past 700 years in the history of a lowland wetland landscape in the Czech Republic with the help of palaeoecological, ecological, landscape archaeological, and archival data. Macrofossil and pollen data were compared to known drainage works in the area and historical climatological data. Trends and events in habitat conditions were assessed using species indicator values. Results showed that ecological succession was the general process in the study area, detected as a trend towards eutrophication, desiccation, and vegetation closure. Short-term events influenced development at the sites mainly from the second half of the nineteenth century. This is consistent with drainage history, although bias related to sample frequency cannot be excluded. On the whole, long-term trends and discrete events were complementary on different scales. We conclude that humans facilitated and accelerated background processes, which can be most likely associated with the succession of open wetlands towards terrestrial ecosystems.

Keywords

Human impact Macrofossils Pollen Species indicator values Vegetation development Drainage channels 

Supplementary material

10113_2016_1033_MOESM1_ESM.pdf (132 kb)
Supplementary material 1 (PDF 131 kb)
10113_2016_1033_MOESM2_ESM.pdf (173 kb)
Supplementary material 2 (PDF 172 kb)
10113_2016_1033_MOESM3_ESM.pdf (2.8 mb)
Supplementary material 3 (PDF 2871 kb)
10113_2016_1033_MOESM4_ESM.pdf (219 kb)
Supplementary material 4 (PDF 218 kb)
10113_2016_1033_MOESM5_ESM.pdf (2.9 mb)
Supplementary material 5 (PDF 2942 kb)
10113_2016_1033_MOESM6_ESM.pdf (4 mb)
Supplementary material 6 (PDF 4078 kb)

References

  1. Aston M (1985) Interpreting the landscape: landscape archaeology and local history. Routledge, LondonCrossRefGoogle Scholar
  2. Balátová-Tuláčková E (1968) Grundwasserganglinien und Wiesengesellschaften. (Vergleichende Studie der Wiesen aus Südmähren und der Südwestslowakei). Přírodovědné práce ústavů Československé Akademie Věd Brno 2/2:1–37Google Scholar
  3. Balátová-Tuláčková E (1976) Rieder und Sumpfwiesen der Ordnung Magnocaricetalia in der Záhorie-Tiefebene und dem nördlich angrenzenden Gebiete. Vegetácia ČSSR Ser B 3:1–257Google Scholar
  4. Bennike O (2000) Palaeoecological studies of Holocene lake sediments from west Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 155:285–304. doi:10.1016/S0031-0182(99)00121-2 CrossRefGoogle Scholar
  5. Beug HJ (2004) Lietfaden der Pollen bestimmung für Mitteleuropa und angrezende Gebiete. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  6. Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, LondonGoogle Scholar
  7. Bobbink R, Hornung M, Roelofs JG (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x CrossRefGoogle Scholar
  8. Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  9. Brander LM, Bräuer I, Gerdes H, Ghermandi A, Kuik O, Markandya A, Navrud S, Nunes PALD, Schaafsma M, Vos H, Wagtendonk A (2012) Using meta-analysis and GIS for value transfer and scaling up: valuing climate change induced losses of European wetlands. Environ Resour Econ. doi:10.1007/s10640-011-9535-1 Google Scholar
  10. Brázdil R, Štěpánková P, Kyncl T, Kyncl J (2002) Fir tree-ring reconstruction of March–July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res 20:223–239. doi:10.3354/cr020223 CrossRefGoogle Scholar
  11. Brázdil R, Chromá K, Valášek H, Dolák L (2012) Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751–1900 AD. Clim Past 8:467–481. doi:10.5194/cp-8-467-2012 CrossRefGoogle Scholar
  12. Bronk Ramsey C (2011) OxCal 4.2 Manual. Oxford Radiocarbon Accelerator Unit, Oxford. http://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html. Accessed 20 August 2015
  13. Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T (2011) Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor Appl Climatol 105:167–180. doi:10.1007/s00704-010-0381-9 CrossRefGoogle Scholar
  14. Cappers RTJ, Neef R (2012) Handbook of plant palaeoecology. Barkhuis Publishing, GroningenGoogle Scholar
  15. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale Zadenatlas van Nederland. Digital Seed Atlas of the Netherlands. Barkhuis Publishing, GroningenGoogle Scholar
  16. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  17. Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013) Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75:3–26. doi:10.1007/s00027-011-0233-4 CrossRefGoogle Scholar
  18. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution, WashingtonCrossRefGoogle Scholar
  19. Czerepko J (2008) A long-term study of successional dynamics in the forest wetlands. Forest Ecol Manag 255:630–642. doi:10.1016/j.foreco.2007.09.039 CrossRefGoogle Scholar
  20. Davidson TA, Sayer CD, Bennion H, David C, Rose N, Wade MP (2005) A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biol 50:1671–1686. doi:10.1111/j.1365-2427.2005.01414.x CrossRefGoogle Scholar
  21. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506. doi:10.1078/1439-1791-00185 CrossRefGoogle Scholar
  22. Dobrovolný P, Brázdil R, Trnka M, Kotyza O, Valášek H (2015) Precipitation reconstruction for the Czech Lands, AD 1501–2010. Int J Climatol 35:1–14. doi:10.1002/joc.3957 CrossRefGoogle Scholar
  23. Egan D, Howell E (eds) (2001) The historical ecology handbook: a restorationist’s guide to reference ecosystems. Island Press, WashingtonGoogle Scholar
  24. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  25. Fernández-Jalvo Y, Scott L, Andrews P (2011) Taphonomy in palaeoecological interpretations. Quat Sci Rev 30:1296–1302. doi:10.1016/j.quascirev.2010.07.022 CrossRefGoogle Scholar
  26. Gifford DP (1981) Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines. Adv Archaeol Method Theory 4:365–438CrossRefGoogle Scholar
  27. Glenn-Lewin DC, Peet RK, Veblen TT (eds) (1992) Plant succession: theory and prediction. Chapman & Hall, LondonGoogle Scholar
  28. Grimm EC (2011) Tilia software v.1.7.16. Illinois State Museum, SpringfieldGoogle Scholar
  29. Hejný S (1957) Ein Beitrag zur ökologischen Gliederung der Makrophyten in den Niederungsgewässern der Tschechoslowakei. Preslia 29:349–368Google Scholar
  30. Hejný S (1960) Ökologische Charakteristik der Wasser- und Sumpflanzen in den slowakischen Tiefebenen (Donau- und Theißgebiet). Vydavateľstvo Slovenskej akadémie vied, BratislavaGoogle Scholar
  31. Hejný S, Hroudová Z (1987) Plant adaptations to shallow water habitats. Arch Hydrobiol 27:157–166Google Scholar
  32. Hejný S, Husák Š (1978) Higher plant communities. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems. Springer, Berlin, pp 23–64CrossRefGoogle Scholar
  33. Hejný S, Husák Š, Jeřábková O, Ostrý I (1982) Anthropogenic impact on fishpond flora and vegetation. In: Gopal B, Turner RE, Wetzel RG, Whigham DF (eds) Wetlands, ecology and management. National Institute of Ecology and International Scientific Publications, Jaipur, pp 425–433Google Scholar
  34. Hrádek M (1999) Geomorphological aspects of the flood of July 1997 in the Morava and Oder Basins in Moravia, Czech Republic. Studia Geomorphologica Carpatho-Balcanica 33:45–66Google Scholar
  35. Hroudová Z, Zákravský P, Hrouda L, Ostrý I (1992) Oenanthe aquatica (L.) Poir.: seed reproduction, population structure, habitat conditions and distribution in Czechoslovakia. Folia Geobot 27:301–335CrossRefGoogle Scholar
  36. Jamrichová E, Szabó P, Hédl R, Kuneš P, Bobek P, Pelánková B (2013) Continuity and change in the vegetation of a Central European oakwood. Holocene 23:46–56. doi:10.1177/0959683612450200 CrossRefGoogle Scholar
  37. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2 CrossRefGoogle Scholar
  38. Keddy PA (2010) Wetland ecology. Principles and conservation, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. Bot Rev 71:449–482. doi:10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2 CrossRefGoogle Scholar
  40. Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136. doi:10.1139/a06-001 CrossRefGoogle Scholar
  41. Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettlehole peatland in northern Poland. Holocene 17:1185–1196. doi:10.1177/0959683607085123 CrossRefGoogle Scholar
  42. Magyari E, Sümegi P, Braun M, Jakab G, Molnár M (2001) Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. J Ecol 89:1019–1032. doi:10.1111/j.1365-2745.2001.00624.x CrossRefGoogle Scholar
  43. McNeill JR (2000) Something new under the sun: An environmental history of the twentieth-century world. Norton, New YorkGoogle Scholar
  44. Middleton BA, Holsten B, van Diggelen R (2006) Biodiversity management of fens and fen meadows by grazing, cutting and burning. Appl Veg Sci 9:307–316. doi:10.1111/j.1654-109X.2006.tb00680.x CrossRefGoogle Scholar
  45. Moravcová L, Zákravský P, Hroudová Z (2001) Germination and seedling establishment in Alisma gramineum, A. plantago-aquatica and A. lanceolatum under different environmental conditions. Folia Geobot 36:131–146. doi:10.1007/BF02803158 CrossRefGoogle Scholar
  46. Němec R, Dřevojan P, Šumberová K (2014) Wetlands on arable land in Znojmo region as a refuge of important and rare vascular plants. Thayensia 11:3–76Google Scholar
  47. Novák V, Pelíšek J (1943) Stručná charakteristika půd na přesypových pískách v lesní oblasti Dubrava u Hodonína. Lesnická práce 8:225–235Google Scholar
  48. Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geog 27:230–259. doi:10.1191/0309133303pp379ra CrossRefGoogle Scholar
  49. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286 CrossRefGoogle Scholar
  50. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135CrossRefGoogle Scholar
  51. Podani J (2006) Braun-Blanquet’s legacy and data analysis in vegetation science. J Veg Sci 17:113–117. doi:10.1111/j.1654-1103.2006.tb02429.x CrossRefGoogle Scholar
  52. Pokorný P, Jankovská V (2000) Long-term vegetation dynamics and the infilling process of a former lake (Švarcenberk, Czech Republic). Folia Geobot 35:433–457. doi:10.1007/BF02803554 CrossRefGoogle Scholar
  53. Pott R, Remy D (2000) Gewässer des Binnenlandes. Ulmer, StuttgartGoogle Scholar
  54. Prach K, Walker LR (2011) Four opportunities for studies of ecological succession. Trends Ecol Evol 26:119–123. doi:10.1016/j.tree.2010.12.007 CrossRefGoogle Scholar
  55. Rackham O (2006) Woodlands. Collins, LondonGoogle Scholar
  56. Rasmussen P, Anderson NJ (2005) Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr 32:1993–2005. doi:10.1111/j.1365-2699.2005.01352.x CrossRefGoogle Scholar
  57. Reille M (1995) Pollen et spores D´Europe et D´Afrique du Nort. Supplement 1. Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  58. Reille M (1998) Pollen et spores D´Europe et D´Afrique du Nort. Supplement 2. Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  59. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887. doi:10.2458/azu_js_rc.55.16947 CrossRefGoogle Scholar
  60. Rintanen T (1996) Changes in the flora and vegetation of 113 Finnish lakes during 40 years. Ann Bot Fenn 33:101–122Google Scholar
  61. Sayre NF (2005) Ecological and geographical scale: parallels and potential for integration. Prog Hum Geog 29:276–290. doi:10.1191/0309132505ph546oa CrossRefGoogle Scholar
  62. Sonnlechner C (2004) The establishment of new units of production in Carolingian times: making early medieval sources relevant for environmental history. Viator 35:21–48. doi:10.1484/J.VIATOR.2.300191 CrossRefGoogle Scholar
  63. Stankevica K, Kalnina L, Klavins M, Cerina A, Ustupe L, Kaup E (2015) Reconstruction of the Holocene palaeoenvironmental conditions accordingly to the multiproxy sedimentary records from Lake Pilvelis, Latvia. Quat Int 386:102–115. doi:10.1016/j.quaint.2015.02.031 CrossRefGoogle Scholar
  64. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198. doi:10.1126/science.224.4654.1191 CrossRefGoogle Scholar
  65. Strohbach M, Audorff V, Beierkuhnlein C (2009) Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors? J Limnol 68:375–384. doi:10.4081/jlimnol.2009.375 CrossRefGoogle Scholar
  66. Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi:10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 CrossRefGoogle Scholar
  67. Szabó P (2010) Ancient woodland boundaries in Europe. J Hist Geogr 36:205–214. doi:10.1016/j.jhg.2009.10.005 CrossRefGoogle Scholar
  68. Szabó P (2015) Historical ecology: past, present and future. Biol Rev 90:997–1014. doi:10.1111/brv.12141 CrossRefGoogle Scholar
  69. Szabó P, Hédl R (2011) Advancing the integration of history and ecology for conservation. Conserv Biol 25:680–687. doi:10.1111/j.1523-1739.2011.01710.x CrossRefGoogle Scholar
  70. Szabó P, Hédl R (2013) Socio-economic demands, ecological conditions and the power of tradition: past woodland management decisions in a Central European landscape. Landsc Res 38:243–261. doi:10.1080/01426397.2012.677022 CrossRefGoogle Scholar
  71. Ter Braak CFJ, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78:57–72. doi:10.1016/0025-5564(86)90031-3 CrossRefGoogle Scholar
  72. Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, IthacaGoogle Scholar
  73. Thompson KBSR, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241. doi:10.2307/2389893 CrossRefGoogle Scholar
  74. Tolasz R, Míková T, Valeriánová A, Voženílek V (eds) (2007) Climate atlas of Czechia. Czech Hydrometeorological Institute, Praha and Palacký University, OlomoucGoogle Scholar
  75. Tölgyesi C, Bátori Z, Erdős L (2014) Using statistical tests on relative ecological indicator values to compare vegetation units—different approaches and weighting methods. Ecol Indic 36:441–446. doi:10.1016/j.ecolind.2013.09.002 CrossRefGoogle Scholar
  76. Väliranta MM (2006) Long-term changes in aquatic plant species composition in north-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquat Bot 85:224–232. doi:10.1016/j.aquabot.2006.05.003 CrossRefGoogle Scholar
  77. van Geel B, Bohncke SJ, Dee H (1980) A palaeoecological study of an upper Late Glacial and Holocene sequence from “de Borchert”, the Netherlands. Rev Paleobot Palyno 31:367–448. doi:10.1016/0034-6667(80)90035-4 CrossRefGoogle Scholar
  78. Velikevich FY, Zastawniak E (2006) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 1—pteridophytes and monocotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  79. Velikevich FY, Zastawniak E (2008) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 2—herbaceous dicotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  80. Walker M, Walker MJC (2005) Quaternary dating methods. Wiley, New YorkGoogle Scholar
  81. White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit W, Beyschlag W (eds) Genetics physiology systematics ecology. Springer, Berlin, pp 399–450Google Scholar
  82. Wildi O (2016) Why mean indicator values are not biased. J Veg Sci 27:40–49. doi:10.1111/jvs.12336 CrossRefGoogle Scholar
  83. Wohlfarth B, Tarasov P, Bennike O, Lacourse T, Subetto D, Torssander P, Romanenko F (2006) Late glacial and Holocene palaeoenvironmental changes in the Rostov-Yaroslavl’ area, West Central Russia. J Paleolimnol 35:543–569. doi:10.1007/s10933-005-3240-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Péter Szabó
    • 1
  • Andrea Gálová
    • 2
  • Eva Jamrichová
    • 1
    • 2
  • Kateřina Šumberová
    • 1
  • Jan Šipoš
    • 1
    • 3
  • Radim Hédl
    • 1
    • 4
  1. 1.Department of Vegetation EcologyInstitute of Botany of the Czech Academy of SciencesBrnoCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  4. 4.Department of Botany, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations