Protein futures for Western Europe: potential land use and climate impacts in 2050

Abstract

Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Albanito F, Beringer T, Corstanje R, Poulter B, Stephenson A, Zawadzka J, Smith P (2015) Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy 8(1):81–95. doi:10.1111/gcbb.12242

    Article  Google Scholar 

  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050. The 2012 revision. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  3. Andersen E, Baldock D, Bennet H, Beaufoy G, Bignal E, Brower F, Elbersen B, Eiden G, Godeschalk F, Jones G, McCracken DI, Nieuwenhuizen W, van Eupen M, Hennekes S, Zervas G (2003) Developing a high nature value farming area indicator. Consultancy report to the EEA. European Environment Agency, Copenhagen

    Google Scholar 

  4. Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nat Clim Change 4(10):924–929. doi:10.1038/nclimate2353

    Article  Google Scholar 

  5. Bennetzen EH, Smith P, Porter JR (2016) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Change Biol 22(2):763–781. doi:10.1111/gcb.13120

    Article  Google Scholar 

  6. Bryngelsson D, Wirsenius S, Hedenus F, Sonesson U (2016) How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 59:152–164. doi:10.1016/j.foodpol.2015.12.012

    Article  Google Scholar 

  7. Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci 107(26):12052–12057. doi:10.1073/pnas.0914216107

    CAS  Article  Google Scholar 

  8. de Ruiter H, Macdiarmid JI, Matthews RB, Kastner T, Smith P (2016) Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. J R Soc Interface. doi:10.1098/rsif.2015.1001

    Google Scholar 

  9. EC (2011) A roadmap for moving to a competitive low carbon economy in 2050: COM (2011) 112 final. European Commission, Brussels

    Google Scholar 

  10. EC (2015) The early years: establishment of the CAP. European Commission. http://ec.europa.eu/agriculture/cap-history/early-years/index_en.htm. Accessed 4 May 2016

  11. Eurostat (2007) The use of plant protection products in the European Union data 1992–2003: 2007 revision. European Commission, Brussels

    Google Scholar 

  12. FAO (2011) Global food losses and food waste—extent causes and prevention. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  13. FAO (2015a) FAO geonetwork. Find and analyze geo-spatial data. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/geonetwork. Accessed 2 Feb 2015

  14. FAO (2015b) FAOSTAT. Food and Agriculture Organization of the United Nations, Rome. http://faostat.fao.org/default.aspx. Accessed 6 Mar 2015

  15. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    CAS  Article  Google Scholar 

  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  17. Francis C, Lieblein G, Gliessman S, Breland TA, Creamer N, Harwood R, Salomonsson L, Helenius J, Rickerl D, Salvador R, Wiedenhoeft M, Simmons S, Allen P, Altieri M, Flora C, Poincelot R (2003) Agroecology: the ecology of food systems. J Sustain Agric 22(3):99–118. doi:10.1300/J064v22n03_10

    Article  Google Scholar 

  18. Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Policy 12(4):491–503. doi:10.1016/j.envsci.2009.01.006

    CAS  Article  Google Scholar 

  19. Garnett T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36(SUPPL, 1):S23–S32

    Article  Google Scholar 

  20. Garnett T (2015) Gut feelings and possible tomorrows: (where) does animal farming fit? Food climate research network. University of Oxford, Oxford

    Google Scholar 

  21. Garnett T, Röös E, Little D (2015) Lean green mean obscene…? What is efficiency? And is it sustainable? Food climate research network. University of Oxford, Oxford

    Google Scholar 

  22. Godfray C, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi:10.1126/science.1185383

    CAS  Article  Google Scholar 

  23. Hallström E, Carlsson-Kanyama A, Börjesson P (2015) Environmental impact of dietary change: a systematic review. J Clean Prod 91:1–11. doi:10.1016/j.jclepro.2014.12.008

    Article  Google Scholar 

  24. Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC, Mosnier A, Thornton PK, Böttcher H, Conant RT, Frank S, Fritz S, Fuss S, Kraxner F, Notenbaert A (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 111(10):3709–3714. doi:10.1073/pnas.1308044111

    Article  Google Scholar 

  25. Hedenus F, Wirsenius S, Johansson DA (2014) The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim Change 124(1–2):79–91. doi:10.1007/s10584-014-1104-5

    Article  Google Scholar 

  26. Hess T, Andersson U, Mena C, Williams A (2015) The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50:1–10. doi:10.1016/j.foodpol.2014.10.013

    Article  Google Scholar 

  27. Hoolohan C, Berners-Lee M, McKinstry-West J, Hewitt CN (2013) Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 63:1065–1074. doi:10.1016/j.enpol.2013.09.046

    Article  Google Scholar 

  28. Hötzel MJ (2014) Improving farm animal welfare: is evolution or revolution needed in production systems? In: Appleby MC, Weary DM, Sandoe P (eds) Dilemmas in animal welfare. CABI, Wallingford

    Google Scholar 

  29. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  30. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909

    CAS  Article  Google Scholar 

  31. Little DC, Murray FJ, Azim E, Leschen W, Boyd K, Watterson A, Young JA (2008) Options for producing a warm-water fish in the UK: limits to “green growth”? Trends Food Sci Technol 19(5):255–264. doi:10.1016/j.tifs.2007.12.003

    CAS  Article  Google Scholar 

  32. Millward JD, Garnett T (2010) Plenary lecture 3 food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods. Proc Nutr Soc 69(01):103–118. doi:10.1017/S0029665109991868

    Article  Google Scholar 

  33. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257

    CAS  Article  Google Scholar 

  34. NEF (2012) Fish dependence—2012 update. The increasing reliance of the EU on fish from elsewhere. New Economics Foundation, London

    Google Scholar 

  35. Nielsen HM, Olesen I, Navrud S, Kolstad K, Amer P (2011) How to consider the value of farm animals in breeding goals, a review of current status and future challenges. J Agric Environ Ethics 24(4):309–330. doi:10.1007/s10806-010-9264-4

    Article  Google Scholar 

  36. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JW, Stampfer MJ, Willett WC, Hu FB (2012) Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med 172(7):555–563. doi:10.1001/archinternmed.2011.2287

    Article  Google Scholar 

  37. Paracchini ML, Petersen JE, Hoogeveen Y, Bamps C, Burfield I, van Swaay C (2008) High nature value farmland in Europe. An estimate of the distribution patterns on the basis of land cover and biodiversity data. EUR 23480 EN—2008. Joint Research Centre, European Commisson, Ispra

    Google Scholar 

  38. Post MJ (2012) Cultured meat from stem cells: challenges and prospects. Meat Sci 92(3):297–301. doi:10.1016/j.meatsci.2012.04.008

    Article  Google Scholar 

  39. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22(1):GB1003. doi:10.1029/2007GB002952

    Article  Google Scholar 

  40. Röös E, Nylinder J (2013) Uncertainties and variations in the carbon footprint of livestock products. Report 063. Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala

  41. Röös E, Karlsson H, Witthöft C, Sundberg C (2015) Evaluating the sustainability of diets—combining environmental and nutritional aspects. Environ Sci Policy 47:157–166. doi:10.1016/j.envsci.2014.12.001

    Article  Google Scholar 

  42. Saxe H, Larsen TM, Mogensen L (2013) The global warming potential of two healthy Nordic diets compared with the average Danish diet. Clim Change 116(2):249–262

    Article  Google Scholar 

  43. Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A (2009) Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med 169(6):562–571. doi:10.1001/archinternmed.2009.6

    CAS  Article  Google Scholar 

  44. Smith P (2013) Delivering food security without increasing pressure on land. Global Food Secur 2(1):18–23. doi:10.1016/j.gfs.2012.11.008

    Article  Google Scholar 

  45. Smith P (2014) Do grasslands act as a perpetual sink for carbon? Glob Change Biol 20(9):2708–2711. doi:10.1111/gcb.12561

    Article  Google Scholar 

  46. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  47. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363(1492):789–813

    CAS  Article  Google Scholar 

  48. Smith P, Gregory PJ, Van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B Biol Sci 365(1554):2941–2957

    Article  Google Scholar 

  49. Smith P, Haberl H, Popp A, Erb K-H, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O, Böttcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob Change Biol 19(8):2285–2302. doi:10.1111/gcb.12160

    Article  Google Scholar 

  50. Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R (2007) Full accounting of the greenhouse gas (CO2 N2O CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121(1–2):121–134. doi:10.1016/j.agee.2006.12.022

    CAS  Article  Google Scholar 

  51. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi:10.1126/science.1259855

    Google Scholar 

  52. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  53. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522. doi:10.1038/nature13959

    CAS  Article  Google Scholar 

  54. UN (2012) World population prospects: the 2012 revision. United Nations, New York

    Google Scholar 

  55. UN (2015a) Composition of macro geographical (continental) regions geographical sub-regions and selected economic and other groupings. United Nations. http://unstats.un.org/unsd/methods/m49/m49regin.htm. Accessed 6 Apr 2015

  56. UN (2015b) Sustainable development goals. United Nations. https://sustainabledevelopment.un.org/?menu=1300. Accessed 10 May 2016

  57. Valin H, Havlík P, Mosnier A, Herrero M, Schmid E, Obersteiner M (2013) Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ Res Lett 8(3):035019. doi:10.1088/1748-9326/8/3/035019

    Article  Google Scholar 

  58. van der Spiegel M, Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects microalgae seaweed duckweed and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12(6):662–678. doi:10.1111/1541-4337.12032

    Article  Google Scholar 

  59. Westhoek H, Lesschen JP, Rood T, Wagner S, De Marco A, Murphy-Bokern D, Leip A, van Grinsven H, Sutton MA, Oenema O (2014) Food choices health and environment: effects of cutting Europe’s meat and dairy intake. Glob Environ Change 26:196–205. doi:10.1016/j.gloenvcha.2014.02.004

    Article  Google Scholar 

  60. Wirsenius S, Azar C, Berndes G (2010) How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric Syst 103(9):621–638. doi:10.1016/j.agsy.2010.07.005

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks to the Future Agriculture initiative at the Swedish University of Agricultural Sciences (SLU) for funding the development of the model used to perform the calculations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elin Röös.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 365 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Röös, E., Bajželj, B., Smith, P. et al. Protein futures for Western Europe: potential land use and climate impacts in 2050. Reg Environ Change 17, 367–377 (2017). https://doi.org/10.1007/s10113-016-1013-4

Download citation

Keywords

  • Land use
  • Climate
  • Food
  • Dietary change
  • Mitigation
  • Protein