Regional Environmental Change

, Volume 17, Issue 2, pp 367–377 | Cite as

Protein futures for Western Europe: potential land use and climate impacts in 2050

  • Elin RöösEmail author
  • Bojana Bajželj
  • Pete Smith
  • Mikaela Patel
  • David Little
  • Tara Garnett
Original Article


Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.


Land use Climate Food Dietary change Mitigation Protein 



Our thanks to the Future Agriculture initiative at the Swedish University of Agricultural Sciences (SLU) for funding the development of the model used to perform the calculations.

Supplementary material

10113_2016_1013_MOESM1_ESM.pdf (366 kb)
Supplementary material 1 (PDF 365 kb)


  1. Albanito F, Beringer T, Corstanje R, Poulter B, Stephenson A, Zawadzka J, Smith P (2015) Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy 8(1):81–95. doi: 10.1111/gcbb.12242 CrossRefGoogle Scholar
  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050. The 2012 revision. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  3. Andersen E, Baldock D, Bennet H, Beaufoy G, Bignal E, Brower F, Elbersen B, Eiden G, Godeschalk F, Jones G, McCracken DI, Nieuwenhuizen W, van Eupen M, Hennekes S, Zervas G (2003) Developing a high nature value farming area indicator. Consultancy report to the EEA. European Environment Agency, CopenhagenGoogle Scholar
  4. Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nat Clim Change 4(10):924–929. doi: 10.1038/nclimate2353 CrossRefGoogle Scholar
  5. Bennetzen EH, Smith P, Porter JR (2016) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Change Biol 22(2):763–781. doi: 10.1111/gcb.13120 CrossRefGoogle Scholar
  6. Bryngelsson D, Wirsenius S, Hedenus F, Sonesson U (2016) How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 59:152–164. doi: 10.1016/j.foodpol.2015.12.012 CrossRefGoogle Scholar
  7. Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci 107(26):12052–12057. doi: 10.1073/pnas.0914216107 CrossRefGoogle Scholar
  8. de Ruiter H, Macdiarmid JI, Matthews RB, Kastner T, Smith P (2016) Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. J R Soc Interface. doi: 10.1098/rsif.2015.1001 Google Scholar
  9. EC (2011) A roadmap for moving to a competitive low carbon economy in 2050: COM (2011) 112 final. European Commission, BrusselsGoogle Scholar
  10. EC (2015) The early years: establishment of the CAP. European Commission. Accessed 4 May 2016
  11. Eurostat (2007) The use of plant protection products in the European Union data 1992–2003: 2007 revision. European Commission, BrusselsGoogle Scholar
  12. FAO (2011) Global food losses and food waste—extent causes and prevention. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  13. FAO (2015a) FAO geonetwork. Find and analyze geo-spatial data. Food and Agriculture Organization of the United Nations, Rome. Accessed 2 Feb 2015
  14. FAO (2015b) FAOSTAT. Food and Agriculture Organization of the United Nations, Rome. Accessed 6 Mar 2015
  15. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342CrossRefGoogle Scholar
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. Francis C, Lieblein G, Gliessman S, Breland TA, Creamer N, Harwood R, Salomonsson L, Helenius J, Rickerl D, Salvador R, Wiedenhoeft M, Simmons S, Allen P, Altieri M, Flora C, Poincelot R (2003) Agroecology: the ecology of food systems. J Sustain Agric 22(3):99–118. doi: 10.1300/J064v22n03_10 CrossRefGoogle Scholar
  18. Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Policy 12(4):491–503. doi: 10.1016/j.envsci.2009.01.006 CrossRefGoogle Scholar
  19. Garnett T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36(SUPPL, 1):S23–S32CrossRefGoogle Scholar
  20. Garnett T (2015) Gut feelings and possible tomorrows: (where) does animal farming fit? Food climate research network. University of Oxford, OxfordGoogle Scholar
  21. Garnett T, Röös E, Little D (2015) Lean green mean obscene…? What is efficiency? And is it sustainable? Food climate research network. University of Oxford, OxfordGoogle Scholar
  22. Godfray C, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi: 10.1126/science.1185383 CrossRefGoogle Scholar
  23. Hallström E, Carlsson-Kanyama A, Börjesson P (2015) Environmental impact of dietary change: a systematic review. J Clean Prod 91:1–11. doi: 10.1016/j.jclepro.2014.12.008 CrossRefGoogle Scholar
  24. Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC, Mosnier A, Thornton PK, Böttcher H, Conant RT, Frank S, Fritz S, Fuss S, Kraxner F, Notenbaert A (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 111(10):3709–3714. doi: 10.1073/pnas.1308044111 CrossRefGoogle Scholar
  25. Hedenus F, Wirsenius S, Johansson DA (2014) The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim Change 124(1–2):79–91. doi: 10.1007/s10584-014-1104-5 CrossRefGoogle Scholar
  26. Hess T, Andersson U, Mena C, Williams A (2015) The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50:1–10. doi: 10.1016/j.foodpol.2014.10.013 CrossRefGoogle Scholar
  27. Hoolohan C, Berners-Lee M, McKinstry-West J, Hewitt CN (2013) Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 63:1065–1074. doi: 10.1016/j.enpol.2013.09.046 CrossRefGoogle Scholar
  28. Hötzel MJ (2014) Improving farm animal welfare: is evolution or revolution needed in production systems? In: Appleby MC, Weary DM, Sandoe P (eds) Dilemmas in animal welfare. CABI, WallingfordGoogle Scholar
  29. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  30. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909CrossRefGoogle Scholar
  31. Little DC, Murray FJ, Azim E, Leschen W, Boyd K, Watterson A, Young JA (2008) Options for producing a warm-water fish in the UK: limits to “green growth”? Trends Food Sci Technol 19(5):255–264. doi: 10.1016/j.tifs.2007.12.003 CrossRefGoogle Scholar
  32. Millward JD, Garnett T (2010) Plenary lecture 3 food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods. Proc Nutr Soc 69(01):103–118. doi: 10.1017/S0029665109991868 CrossRefGoogle Scholar
  33. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257CrossRefGoogle Scholar
  34. NEF (2012) Fish dependence—2012 update. The increasing reliance of the EU on fish from elsewhere. New Economics Foundation, LondonGoogle Scholar
  35. Nielsen HM, Olesen I, Navrud S, Kolstad K, Amer P (2011) How to consider the value of farm animals in breeding goals, a review of current status and future challenges. J Agric Environ Ethics 24(4):309–330. doi: 10.1007/s10806-010-9264-4 CrossRefGoogle Scholar
  36. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JW, Stampfer MJ, Willett WC, Hu FB (2012) Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med 172(7):555–563. doi: 10.1001/archinternmed.2011.2287 CrossRefGoogle Scholar
  37. Paracchini ML, Petersen JE, Hoogeveen Y, Bamps C, Burfield I, van Swaay C (2008) High nature value farmland in Europe. An estimate of the distribution patterns on the basis of land cover and biodiversity data. EUR 23480 EN—2008. Joint Research Centre, European Commisson, IspraGoogle Scholar
  38. Post MJ (2012) Cultured meat from stem cells: challenges and prospects. Meat Sci 92(3):297–301. doi: 10.1016/j.meatsci.2012.04.008 CrossRefGoogle Scholar
  39. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22(1):GB1003. doi: 10.1029/2007GB002952 CrossRefGoogle Scholar
  40. Röös E, Nylinder J (2013) Uncertainties and variations in the carbon footprint of livestock products. Report 063. Department of Energy and Technology, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  41. Röös E, Karlsson H, Witthöft C, Sundberg C (2015) Evaluating the sustainability of diets—combining environmental and nutritional aspects. Environ Sci Policy 47:157–166. doi: 10.1016/j.envsci.2014.12.001 CrossRefGoogle Scholar
  42. Saxe H, Larsen TM, Mogensen L (2013) The global warming potential of two healthy Nordic diets compared with the average Danish diet. Clim Change 116(2):249–262CrossRefGoogle Scholar
  43. Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A (2009) Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med 169(6):562–571. doi: 10.1001/archinternmed.2009.6 CrossRefGoogle Scholar
  44. Smith P (2013) Delivering food security without increasing pressure on land. Global Food Secur 2(1):18–23. doi: 10.1016/j.gfs.2012.11.008 CrossRefGoogle Scholar
  45. Smith P (2014) Do grasslands act as a perpetual sink for carbon? Glob Change Biol 20(9):2708–2711. doi: 10.1111/gcb.12561 CrossRefGoogle Scholar
  46. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  47. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363(1492):789–813CrossRefGoogle Scholar
  48. Smith P, Gregory PJ, Van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B Biol Sci 365(1554):2941–2957CrossRefGoogle Scholar
  49. Smith P, Haberl H, Popp A, Erb K-H, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O, Böttcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob Change Biol 19(8):2285–2302. doi: 10.1111/gcb.12160 CrossRefGoogle Scholar
  50. Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R (2007) Full accounting of the greenhouse gas (CO2 N2O CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121(1–2):121–134. doi: 10.1016/j.agee.2006.12.022 CrossRefGoogle Scholar
  51. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi: 10.1126/science.1259855 Google Scholar
  52. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  53. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522. doi: 10.1038/nature13959 CrossRefGoogle Scholar
  54. UN (2012) World population prospects: the 2012 revision. United Nations, New YorkCrossRefGoogle Scholar
  55. UN (2015a) Composition of macro geographical (continental) regions geographical sub-regions and selected economic and other groupings. United Nations. Accessed 6 Apr 2015
  56. UN (2015b) Sustainable development goals. United Nations. Accessed 10 May 2016
  57. Valin H, Havlík P, Mosnier A, Herrero M, Schmid E, Obersteiner M (2013) Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ Res Lett 8(3):035019. doi: 10.1088/1748-9326/8/3/035019 CrossRefGoogle Scholar
  58. van der Spiegel M, Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects microalgae seaweed duckweed and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12(6):662–678. doi: 10.1111/1541-4337.12032 CrossRefGoogle Scholar
  59. Westhoek H, Lesschen JP, Rood T, Wagner S, De Marco A, Murphy-Bokern D, Leip A, van Grinsven H, Sutton MA, Oenema O (2014) Food choices health and environment: effects of cutting Europe’s meat and dairy intake. Glob Environ Change 26:196–205. doi: 10.1016/j.gloenvcha.2014.02.004 CrossRefGoogle Scholar
  60. Wirsenius S, Azar C, Berndes G (2010) How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric Syst 103(9):621–638. doi: 10.1016/j.agsy.2010.07.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elin Röös
    • 1
    Email author
  • Bojana Bajželj
    • 2
  • Pete Smith
    • 3
  • Mikaela Patel
    • 4
  • David Little
    • 5
  • Tara Garnett
    • 1
  1. 1.Food Climate Research Network, Environmental Change InstituteOxford UniversityOxfordUK
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK
  3. 3.Institute of Biological and Environmental Sciences and ClimateXChangeUniversity of AberdeenAberdeenUK
  4. 4.Department of Animal Nutrition and ManagementSwedish University of Agricultural SciencesUppsalaSweden
  5. 5.Institute of AquacultureUniversity of StirlingStirlingUK

Personalised recommendations