Regional Environmental Change

, Volume 17, Issue 1, pp 285–297 | Cite as

Native forest loss in the Chilean biodiversity hotspot: revealing the evidence

  • Alejandro Miranda
  • Adison Altamirano
  • Luis Cayuela
  • Antonio Lara
  • Mauro González
Original Article

Abstract

The understanding of the spatial and temporal patterns in land use and land cover (LULC) change is a key issue for conservation efforts. In the Chilean hotspot, different studies have attempted to understand variations of LULC change. Nevertheless, a broader understanding of common patterns and variability of LULC over the entire range of the hotspot is lacking. We performed a complete review of the different studies reporting LULC changes and performed a joint analysis of their results using an integrated comprehensive approach. We related the variation of LULC change to latitude, time period and vascular plant richness using generalized linear models. Overall, there were nine studies, which covered 36.5 % of the study area, and reported the loss of 19 % of native forest (782,120 ha) between 1973 and 2011. The highest net forest loss was observed in the 1970–1990 period. This decreased in the 1990–2000 period and rose again in the 2000–2010 period. This result reveals a continuous forest loss in the last 40 years. Conversion of native forest to shrublands is the most important contributor to net native forest loss, accounting for 45 % of the loss. However, in the area of greatest species richness native forests are mainly converted to exotic tree plantations. Chilean forestry model has proved successful in expanding exotic tree plantation, but so far it has not been compatible with native forest conservation and restoration. It is imperative to design a new forestry policy to assure the conservation of one of the most unique biodiversity hotspots worldwide.

Keywords

Land use and land cover change Remote sensing Temperate forest Deforestation Exotic tree plantation 

Notes

Acknowledgments

Alejandro Miranda thanks to CONICYT/Doctoral National Program/21140409, Chile. This research was supported by funding from the FONDECYT project 1141294, FONDEF Idea CA13I10276 and Dirección de Investigación of Universidad de La Frontera, Chile. A. Lara and ME González thank CONICYT/FONDAP/15110009. L. Cayuela was supported by project REMEDINAL-2 (Comunidad de Madrid S2009/AMB-178).

Supplementary material

10113_2016_1010_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Aguayo M, Pauchard A, Azocar G, Parra O (2009) Land use change in the south central Chile at the end of the 20th century. Understanding the spatio-temporal dynamics of the landscape. Rev Chil Hist Nat 82(3):361–374. doi: 10.4067/S0716-078X2009000300004 CrossRefGoogle Scholar
  2. Aguiar AP, Camara G, Sobral MI (2007) Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: exploring intra-regional heterogeneity. Ecol Model 209:169–188. doi: 10.1016/j.ecolmodel.2007.06.019 CrossRefGoogle Scholar
  3. Altamirano A, Lara A (2010) Deforestation in temperate ecosystems of pre-Andean range of south-central Chile. Bosque 31:53–64. doi: 10.4067/S0717-92002010000100007 CrossRefGoogle Scholar
  4. Altamirano A, Aplin P, Miranda A, Cayuela L, Algar A, Field R (2013) High rates of forest loss and turnover obscured by classical landscape measures. Appl Geogr 40:199–211. doi: 10.1016/j.apgeog.2013.03.003 CrossRefGoogle Scholar
  5. Armenteras D, Rodriguez N (2014) Forest deforestation dynamics and drivers in Latin America: a review since 1990. Colomb For 17(2):233–246. doi: 10.14483/udistrital.jour.colomb.for.2014.2.a06 CrossRefGoogle Scholar
  6. Armenteras D, Cabrera E, Rodríguez N, Retana J (2013) National versus regional determinants of tropical deforestation: a case study of in Colombia. Reg Environ Change 13(6):1181–1193. doi: 10.1007/s10113-013-0433-7 CrossRefGoogle Scholar
  7. Armesto J, Rozzi R, Smith-Ramírez C, Arroyo MTK (1998) Conservation targets in South American temperate forests. Science 282:1271–1272. doi: 10.1126/science.282.5392.1271 CrossRefGoogle Scholar
  8. Armesto JJ, Manuscevich D, Mora A, Smith-Ramírez C, Rozzi R, Abarzúa AM, Marquet P (2010) From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27:148–160. doi: 10.1016/j.landusepol.2009.07.006 CrossRefGoogle Scholar
  9. Arroyo MTK, Marquet PA, Marticorena C, Simonetti JA, Cavieres L, Squeo F, Rozzi TR (2004) Chilean winter rainfall-valdivian forests. In: Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (eds) Hotspots revisted: earth’s biologically wealthiest and most threatened ecosystems. CEMEX, México, pp 99–103Google Scholar
  10. Bannister JR, Vidal OJ, Teneb E, Sandoval V (2012) Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecol 37(4):500–509. doi: 10.1111/j.1442-9993.2011.02312.x CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2d edn. Springer-Verlag, New YorkGoogle Scholar
  12. CONAF (2011) Catastro de los Recursos Vegetacionales Nativos de Chile. Monitoreo de cambios y actualizaciones. Período 1997–2011. SantiagoGoogle Scholar
  13. CONAF (2016) Superficies Catastros Usos de Suelos y Recursos Vegetacionales. Departamento de Monitoreo de Ecosistemas Forestales. http://sit.conaf.cl/Accessed. 7 March 2016
  14. Donoso C (1993) Bosques templados de Chile y Argentina: variación, estructura y dinámica. Universitaria, SantiagoGoogle Scholar
  15. Donoso C, Lara A (1995) Utilización de los bosques nativos en Chile: pasado, presente y futuro. In: Armesto J, Villagrán C, Arroyo M (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 363–387Google Scholar
  16. Donoso P, Donoso C, Navarro C (2014) Manejo de ecosistemas forestales. In: Donoso C, Gonzalez M, Lara A (eds) Ecología Forestal: Bases para el Manejo Sustentable y Conservación de los Bosques Nativos de Chile. Ediciones Universidad Austral de Chile, Valdivia, pp 505–525Google Scholar
  17. Echeverría C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130:481–494. doi: 10.1016/j.biocon.2006.01.017 CrossRefGoogle Scholar
  18. Echeverría C, Coomes D, Newton A, Rey-Benayas JM, Lara A (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape in southern Chile. Global Ecol Biogeogr 16:426–439. doi: 10.1111/j.1466-8238.2007.00311.x CrossRefGoogle Scholar
  19. Echeverría C, Newton A, Nahuelhual L, Coomes D, Rey-Benayas JM (2012) How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl Geogr 32:822–831. doi: 10.1016/j.apgeog.2011.08.014 CrossRefGoogle Scholar
  20. FAO (2006) Tendencias y perspectivas del sector forestal en América Latina y el Caribe. Roma, ItaliaGoogle Scholar
  21. FAO (2010) Evaluación de los recursos forestales mundiales 2010. Informe Nacional. Chile. FRA2010/041. Roma, ItalyGoogle Scholar
  22. Gasparri NI, Grau HR (2009) Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For Ecol Manag 258:913–921. doi: 10.1016/j.foreco.2009.02.024 CrossRefGoogle Scholar
  23. Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52(2):143–150. doi: 10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2 CrossRefGoogle Scholar
  24. González M, Lara A, Urrutia R, Bosnich J (2011) Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 32:215–219. doi: 10.4067/S0717-92002011000300002 CrossRefGoogle Scholar
  25. Harrison PA, Berry PM, Simpson G, Haslett JR, Blicharskac M, Bucur M, Dunford R, Egoh B, García-Llorente M, Geamănăd N, Geertsema W, Lommelen E, Meiresonne L, Turkelboom F (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Serv 9:191–203. doi: 10.1016/j.ecoser.2014.05.006 CrossRefGoogle Scholar
  26. Hosonuma N, Herold M, De Sy V, De Fries SR, Brockhaus M, Verchot L, Angelsen A, Romijn E (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7(4):1–12. doi: 10.1088/1748-9326/7/4/044009 CrossRefGoogle Scholar
  27. International Conservation (2014) Biological diversity in the Chilean winter rainfall-valdivian forests. http://www.eoearth.org/view/article/150639. Accessed 6 September 2015
  28. Kim D, Sexton J, Townshend J (2015) Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys Res Lett 42:3495–3501. doi: 10.1002/2014GL062777 CrossRefGoogle Scholar
  29. Lara A, Veblen T (1993) Forest plantations in Chile: a successful model? In: Mather A (ed) Afforestation. Belhaven Press, London, pp 118–139Google Scholar
  30. Lara A, Little C, Urrutia R, McPhee J, Álvarez- Garretón C, Oyarzún C, Soto D, Donoso P, Nahuelhual L, Pino M, Arismendi I (2009) Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. For Ecol Manag 258:415–424. doi: 10.1016/j.foreco.2009.01.004 CrossRefGoogle Scholar
  31. Lara A, Little C, Nahuelhual L, Urrutia R, Díaz I (2011) Lessons, challenges and policy recommendations for the management, conservation and restoration of native forests in Chile. In: Figueroa E (ed) Biodiversity conservation in the Americas: lessons and policy recommendations. Universidad de Chile, Fundación Domeyko, Governo do Estado Sao Paulo. Servicios Graficos Besegraf Ltda, Santiago, 259–299Google Scholar
  32. Lara A, Solari ME, Prieto M, Peña M (2012) Reconstrucción de la cobertura de la vegetación y uso del suelo hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques valdivianos lluviosos de Chile (35º–43º 30´ S). Bosque 33(1):13–23. doi: 10.4067/S0717-92002012000100002 CrossRefGoogle Scholar
  33. Little C, Lara A, McPhee J, Urrutia R (2009) Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. J Hydrol 374:162–170. doi: 10.1016/j.jhydrol.2009.06.011 CrossRefGoogle Scholar
  34. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. Island Press, WashingtonGoogle Scholar
  35. Miranda A, Altamirano A, Cayuela L, Pincheira F, Lara A (2015) Different times, same story: native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Appl Geogr 60:20–28. doi: 10.1016/j.apgeog.2015.02.016 CrossRefGoogle Scholar
  36. Mittermeier RA, Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited: earth’s biologically wealthiest and most threatened ecosystems. CEMEX, MéxicoGoogle Scholar
  37. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zach FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin, Heidelberg, pp 3–22CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefGoogle Scholar
  39. Nahuelhual L, Carmona A, Lara A, Echeverría C, González ME (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in South-Central Chile. Landsc Urb Plan 107(1):12–20. doi: 10.1016/j.landurbplan.2012.04.006 CrossRefGoogle Scholar
  40. Otero L (2006) La huella del fuego. Historia de los bosques nativos. Poblamiento y cambios en el paisaje del sur de Chile. Pehuen, SantiagoGoogle Scholar
  41. Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501. doi: 10.1126/science.1196624 CrossRefGoogle Scholar
  42. Pliscoff P, Fuentes-Castillo T (2011) Representativeness of terrestrial ecosystems in Chile’s protected area system. Environ Conserv 38:303–311. doi: 10.1017/S0376892911000208 CrossRefGoogle Scholar
  43. Putz FE, Redford KH (2010) Tropical forest definitions, degradation, phase shifts, and further transitions. Biotropica 42:10–20. doi: 10.1111/j.1744-7429.2009.00567.x CrossRefGoogle Scholar
  44. Putz F, Romero C (2014) Futures of tropical forests. Biotropica 46:495–505. doi: 10.1111/btp.12124 CrossRefGoogle Scholar
  45. Puyravaud JP (2003) Standardizing the calculation of the annual rate of deforestation. For Ecol Manag 177:593–596. doi: 10.1016/S0378-1127(02)00335-3 CrossRefGoogle Scholar
  46. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 3 June 2014
  47. Reyes R, Nelson H (2014) A tale of two forests: why forests and forest conflicts are both growing in Chile. Int For Rev 16(4):1–10. doi: 10.1505/146554814813484121 Google Scholar
  48. Rodríguez N, Armenteras D, Retana J (2012) Land use and land cover change in the Colombian Andes: dynamics and future scenarios. J Land Use Sci 8(2):154–174. doi: 10.1080/1747423X.2011.650228 CrossRefGoogle Scholar
  49. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  50. Sasaki N, Putz FE (2009) Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv Lett 2:226–232. doi: 10.1111/j.1755-263X.2009.00067.x CrossRefGoogle Scholar
  51. Schulz J, Cayuela L, Echeverria C, Salas J (2010) Rey-Benayas JM (2010) monitoring land cover changes of dryland forest landscape of Central Chile (1975, 2008. Appl Geogr 30(3):436–447. doi: 10.1016/j.apgeog.2009.12.003 CrossRefGoogle Scholar
  52. Squeo FA, Estévez RA, Stoll A, Gaymer CF, Letelier Galvez L (2012) Towards the creation of an integrated system of protected areas in Chile: achievements and challenges. Plant Ecol Div 5:233–243. doi: 10.1080/17550874.2012.679012 CrossRefGoogle Scholar
  53. Van de Wouw P, Echeverría C, Rey-Benayas JM, Holmgren M (2011) Persistent Acacia savannas replace Mediterranean sclerophyllous forests in South America. Forest Ecol Manag 262:1100–1108. doi: 10.1016/j.foreco.2011.06.009 CrossRefGoogle Scholar
  54. Vergara P, Pérez-Hernández C, Hahn I, Soto G (2013) Deforestation in central Chile causes a rapid decline in landscape connectivity for a forest specialist bird species. Ecol Res 28:481–492. doi: 10.1007/s11284-013-1037-x CrossRefGoogle Scholar
  55. Zamorano-Elgueta C, Rey Benayas JM, Cayuela L, Hantson S, Armenteras D (2015) Native forest replacement by exotic plantations in southern Chile (1985–2011) and partial compensation by natural regeneration. For Ecol Manag 345:10–20. doi: 10.1016/j.foreco.2015.02.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratorio de Ecología del Paisaje Forestal, Departamento de Ciencias ForestalesUniversidad de La FronteraTemucoChile
  2. 2.Escuela de Graduados, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  3. 3.Departamental 1 DI, Área de Biodiversidad y ConservaciónUniversidad Rey Juan CarlosMóstolesSpain
  4. 4.Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  5. 5.Center for Climate and Resilience Research (CR2)Universidad de ChileSantiagoChile

Personalised recommendations